
MBE, 17(6): 6259–6277.

DOI: 10.3934/mbe.2020331

Received: 29 June 2020

Accepted: 06 September 2020

Published: 21 September 2020

http://www.aimspress.com/journal/MBE

Research article

A Newton-like iterative method implemented in the DelPhi for solving

the nonlinear Poisson-Boltzmann equation

Chuan Li
1,

*, Mark McGowan
2
, Emil Alexov

3
 and Shan Zhao

2

1
Department of Mathematics, West Chester University of Pennsylvania, West Chester,

Pennsylvania 19383, USA
2

Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA
3

Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634,

USA

* Correspondence: Email: cli@wcupa.edu; Tel: +16104361081; Fax: +16107380578.

Abstract: DelPhi is a popular scientific program which numerically solves the Poisson-Boltzmann

equation (PBE) for electrostatic potentials and energies of biomolecules immersed in water via finite

difference method. It is well known for its accuracy, reliability, flexibility, and efficiency. In this

work, a new edition of DelPhi that uses a novel Newton-like method to solve the nonlinear PBE, in

addition to the already implemented Successive Over Relaxation (SOR) algorithm, is introduced.

Our tests on various examples have shown that this new method is superior to the SOR method in

terms of stability when solving the nonlinear PBE, being able to converge even for problems

involving very strong nonlinearity.

Keywords: DelPhi; Poisson-Boltzmann equation; electrostatics; Newton method; finite difference

technique

1. Introduction

Electrostatic interaction is a major factor which is commonly taken into account when studying

numerous biological phenomena [1,2], such as macromolecular binding and recognition [3−6],

pH-dependent folding and binding [7−11], nonspecific ion binding [12−14], pKa calculations [15−17],

and salt-dependent effects [18,19], etc.. Existing models of calculating electrostatic potentials and

corresponding energies developed in the past couple of decades can be roughly classified into two

6260

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259–6277.

categories. Explicit solvent models treat mobile water and ions explicitly and thus capture all

molecular details but are computationally costly in terms of CPU time and memory usage. Implicit

solvent models, such as the Generalized Born [20] and Poisson-Boltzmann (PB) models [21−26],

treat surrounding water as a continuum media, and can be solved with relatively low computational

costs. Because of that, implicit solvent models are usually preferred when modeling electrostatics of

macromolecules at genome-scale applications.

Among all existing implicit solvent models, the Poisson-Boltzmann equation (PBE), is one of

the most popular models utilized by many researchers. A lot of efforts have been devoted to

developing scientific software to solve the PBE. For instance, DelPhi [27,28] utilizes the finite

difference and Successive Over Relaxation (SOR) methods to iteratively solve the PBE until a

prescribed tolerance is satisfied, PBSA [29] adopts the Finite Volume/Periodic Conjugate Gradient

(FV/PCG) and the Immersed Interface/Fast Fourier Transform (IIM/FFT) methods to solve the PBE,

MIBPB [30] develops a unique matched interface and boundary (MIB) method to explicitly enforce

the jump conditions on the interfaces (molecular surfaces) in the finite difference formulations,

resulting in a method capable of capturing sharp jumps of the potentials at the molecular surfaces,

APBS [31] is an adaptive PBE solver which solves the PBE by a specifically designed finite element

method, and many others [32,33].

As one of the most popular PBE solvers, DelPhi has been continuously maintained and

developed for improved performance. Many new features were added in DelPhi in recent years [34].

This work reports a newly developed Newton-like method which was introduced into DelPhi recently.

This new method has been tested extensively, including some purposely created ―crashing‖ cases

with strong nonlinearity. In particular, this method has been shown to be incredibly stable and is

capable of delivering reliable numerical results in all tested cases, making this newly developed

method a valuable add-on to DelPhi for solving problems with strong nonlinearity.

The rest of this work is organized as follows. The PBE and the finite difference methods are

presented in section 2. Benchmarks of selected examples are shown section 3 to numerically

compare the two methods implemented in DelPhi, followed by Conclusions and Acknowledgements

in sections 4 and 5, respectively.

2. Methods

2.1. The Poisson-Boltzmann equation (PBE)

The PBE [35] is an elliptic-type Partial Differential Equation (PDE) given by

∇ ∙ (𝜀(𝑥)∇𝜙(𝑥)) − 𝜅(𝑥)2 sinh(𝜙(𝑥)) = −4𝜋𝜌(𝑥), (1)

where 𝜙(𝑥) is the electrostatic potential, 𝜀(𝑥) is a spatial dielectric function, 𝜅(𝑥) is a modified

Debye-Huckel parameter, and 𝜌(𝑥) is the charge distribution function. Equation (1) is usually

referred to as the Nonlinear Poisson-Boltzmann Equation (NLPBE) due to the presence of the

hyperbolic sine function, sinh(𝜙(𝑥)), in Eq (1). If the potential 𝜙(𝑥) is known to be small, Eq (1)

can be linearized by an approximation, sinh(𝜙(𝑥)) ≈ 𝜙(𝑥), yielding a simplified model

6261

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259–6277.

∇ ∙ (𝜀(𝑥)∇𝜙(𝑥)) − 𝜅(𝑥)2𝜙(𝑥) = −4𝜋𝜌(𝑥), (2)

commonly referred to as the Linearized Poisson-Boltzmann Equation (LPBE). It is known that exact

solutions to Eqs (1) and (2) only exist for a few simplified cases [27]. In practice, they must be

solved numerically via certain numerical treatments for real bio-objects due to their irregular shapes.

The numerical approaches for handling the nonlinearity of the PBE can be classified into two

categories. In the most commonly used approach, the PBE is discretized by using finite difference or

finite element methods, resulting a nonlinear algebraic system. Then a nonlinear algebraic method,

such as nonlinear relaxation method [36,37], nonlinear conjugate gradient method [38] or inexact

Newton method [39], can be employed to solve the nonlinear system efficiently. A comprehensive

assessment of various algebra-based nonlinear PBE solvers can be found in [40]. A pseudo-time

approach has also been developed [41−43], in which a time-dependent PBE is introduced by adding

a pseudo-time derivative, and the PBE solution is recovered by a steady-state integration. The

pseudo-time approach is usually less efficient than the nonlinear algebraic approach, because a

long-time integration is needed for the steady state. But the pseudo-time approach could be more

stable, especially when an analytical treatment to the nonlinear term is applied [43]. The method

proposed in this work belongs to the first category. In the following subsections, implemented

numerical methods in the DelPhi program will be introduced.

Figure 1. A graph demonstration of the numerical methods implemented in the DelPhi

solver.

2.2. The successive over relaxation (SOR) method

DelPhi solves Eqs (1) and (2) in a cubic domain Ω containing the interested molecule.

Boundary conditions are imposed on the six faces of Ω. Domain Ω is discretized by a uniform mesh

size ℎ = Δ𝑥 = Δ𝑦 = Δ𝑧 in all 𝑥-, 𝑦-, and 𝑧- directions. Approximations to the exact solutions of

Eqs (1) and (2) are to be found at all grids.

6262

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259–6277.

Following the standard finite difference formulation, Eq (1) is discretized, resulting in [27]

ℎ ∑ 𝜀𝑖𝜙𝑖
6
𝑖=1 − ℎ ∑ 𝜀𝑖𝜙0

6
𝑖=1 − 𝜅2 sinh(𝜙0)ℎ3 + 4𝜋𝑞0 = 0, (3)

where 𝜙0 is the unknown potential at a grid 𝑥𝑖,𝑗,𝑘, 𝑞0 is the charge assigned to the same grid 𝑥𝑖,𝑗,𝑘,

𝜙𝑖 , 𝑖 = 1 … 6 are unknown potentials at six closest adjacent grids, and 𝜀𝑖, 𝑖 = 1 … 6 are dielectric

coefficients at six adjacent half grids. See Figure 1 for a demonstration. Equation (3) can be rewritten

as an iteration updating formula

ℎ ∑ 𝜀𝑖𝜙𝑖
𝑛6

𝑖=1 − ℎ ∑ 𝜀𝑖𝜙0
𝑛+16

𝑖=1 − 𝜅2 sinh(𝜙0
𝑛)ℎ3 𝜙0

𝑛+1

𝜙0
𝑛 + 4𝜋𝑞0 = 0 (4)

with the superscript 𝑛 = 0,1, … indicating the number of iterations. Solving 𝜙0
𝑛+1 in terms of

others in Eq (4) yields [35]

𝜙0
𝑛+1 = (∑ 𝜀𝑖𝜙𝑖

𝑛6
𝑖=1 +

4𝜋𝑞0

ℎ
) (∑ 𝜀𝑖

6
𝑖=1 + (𝜅ℎ)2 sinh(𝜙0

𝑛)

𝜙0
𝑛)⁄ (5)

to solve the NLPBE for the potential at grid 𝑥𝑖,𝑗,𝑘. In a similar fashion, one can obtain the formula [44]

𝜙0
𝑛+1 = (∑ 𝜀𝑖𝜙𝑖

𝑛6
𝑖=1 +

4𝜋𝑞0

ℎ
) (∑ 𝜀𝑖

6
𝑖=1 + (𝜅ℎ)2)⁄ (6)

to solve the LPBE for the potential at 𝑥𝑖,𝑗,𝑘. Provided a guessed value of 𝜙0
0 (usually called the

initial value), the current (approximated) potential 𝜙𝑖
𝑛 is evolved to the next (approximated)

potential 𝜙0
𝑛+1 by either Eq (5) or Eq (6) in the 𝑛th step of an iteration process for 𝑛 = 1,2, ….

This process is terminated until a prescribed criterion is satisfied.

In DelPhi, potentials 𝜙0
𝑛+1 and 𝜙0

𝑛 in Eqs (5) and (6) are used in the SOR method

𝜙0
𝑛+1 = 𝜔𝜙0

𝑛+1 + (1 − 𝜔)𝜙0
𝑛 (7)

for improved efficiency or stability in the nth iteration as well. Here the relaxation parameter 𝜔 is

selected to be 0 < 𝜔 < 2. When a value 0 < 𝜔 < 1 is used, the iteration process converges slower

but more stably (under relaxation). When a value 1 < 𝜔 < 2 is used, the iteration process

converges in a faster pace but could be less stable (over relaxation). DelPhi uses 𝜔 = 1 as the

default value, yielding a method commonly known as the Gauss-Seidel (GS) method. DelPhi users

can either manually set the value of 𝜔, or let the program automatically calculate the optimized

values of 𝜔, for either faster convergence rates or stronger stability.

Equation (5) provides a numerical formula to solve the NLPBE iteratively but its convergence

rate is not fast enough to solve problems in three dimensions [44]. DelPhi utilizes a special technique

to accelerate the convergent rate. To this end, Eq (1) is ―linearized‖ and rewritten as

∇ ∙ (𝜀(𝑥)∇𝜙(𝑥)) − 𝜅(𝑥)2𝜙(𝑥) = −4𝜋𝜌(𝑥) + 𝜅(𝑥)2 (sinh(𝜙(𝑥)) − 𝜙(𝑥)), (8)

6263

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259–6277.

where the nonlinear term, 𝜅(𝑥)2 (sinh(𝜙(𝑥)) − 𝜙(𝑥)), acts as an ―excess charge‖ added to the

regular charge term on the right-hand side of Eq (8) [44]. When Eq (8) is discretized, a formula

𝜙0
𝑛+1 = (∑ 𝜀𝑖𝜙𝑖

𝑛6
𝑖=1 +

4𝜋𝑞0

ℎ
−

𝜒(𝜅(𝒙)2(sinh(𝜙0
𝑛)−𝜙0

𝑛))

ℎ
) (∑ 𝜀𝑖

6
𝑖=1 + (𝜅ℎ)2)⁄ (9)

is derived in place of Eq (5) for solving the NLPBE. In Eq (9), the excess charge term is multiplied

by a second relaxation (strength) parameter 𝜒 which is initially small, 𝜒 = 0.05. This parameter is

slowly increased as iteration moves forward until 𝜒 = 1 is reached. Then ―full‖ nonlinear iterations

start with 𝜒 = 1 along the way.

In DelPhi, Eqs (6) and (7) are coupled for solving the LPBE, and Eqs (7) and (9) are coupled for

solving the NLPBE. The iteration process is terminated, for instance, when |𝜙0
𝑛+1 − 𝜙0

𝑛| < TOL at

all grids for a prescribed tolerance TOL. These methods, together with additional computational

techniques, such as the ―checkerboard‖ ordering, stripping, and contiguous memory mapping
35

,

have

been proven to be able to effectively deliver accurate numerical solutions to the LPBE and NLPBE

for many three-dimensional problems.

However, it is known that the aforementioned ―excess charge‖ treatment is merely a

computational technique which could lead to undesired divergences caused by potentials at grids in

water passing certain threshold, the grid spacing, and other factors [44]. One such ―bizarre‖ example

in which the SOR method fails to converge is given in the next section. It calls for a new addition to

DelPhi’s capabilities, namely a Newton-like method, primarily focusing on solving the NLPBE for

problems with strong nonlinearity. This method is described in the next subsection.

2.3. A Newton-like (NWT) method

The NWT method was developed to improve the stability of the numerical procedure when

solving the NLPBE for problems with strong nonlinearity. To this end, we reconsider the left-hand

side of Eq (3) as a function of 𝜙0 and write

𝐹(𝜙0) = ℎ ∑ 𝜀𝑖𝜙𝑖

6

𝑖=1

− ℎ ∑ 𝜀𝑖𝜙0

6

𝑖=1

− 𝜅2 sinh(𝜙0)ℎ3 + 4𝜋𝑞0. (10)

In order to find the root(s) of the equation 𝐹(𝜙0) = 0 via the Newton’s algorithm, the derivate of

𝐹(𝜙0) is calculated first

𝑑𝐹

𝑑𝜙0
= −ℎ ∑ 𝜀𝑖

6

𝑖=1

− ℎ3𝜅2 cosh(𝜙0). (11)

Then Eqs (10) and (11) are substituted in the Newton’s algorithm, yielding

6264

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259–6277.

𝜙0
𝑛+1 = 𝜙0

𝑛 −
𝐹(𝜙0

𝑛)

𝑑𝐹
𝑑𝜙0

(𝜙0
𝑛)

= 𝜙0
𝑛 −

ℎ ∑ 𝜀𝑖𝜙𝑖
𝑛6

𝑖=1 − ℎ ∑ 𝜀𝑖𝜙0
𝑛6

𝑖=1 − 𝜅2 sinh(𝜙0
𝑛)ℎ3 + 4𝜋𝑞0

−ℎ ∑ 𝜀𝑖
6
𝑖=1 − ℎ3𝜅2 cosh(𝜙0

𝑛)

=
∑ 𝜀𝑖𝜙𝑖

𝑛6
𝑖=1 +

4𝜋𝑞0

ℎ
+ (𝜅ℎ)2(𝜙0

𝑛 cosh(𝜙0
𝑛) − sinh(𝜙0

𝑛))

∑ 𝜀𝑖
6
𝑖=1 + (𝜅ℎ)2 cosh(𝜙0

𝑛)
.

 (12)

Equation (12) can be treated as a new updating formula to evolve 𝜙0
𝑛 to 𝜙0

𝑛+1. Moreover, one can

see that there is no difficulty to couple Eqs (7) and (12) and embrace all techniques already

implemented in DelPhi to solve the NPBE.

Following similar derivations, Eq (2) can be discretized as

ℎ ∑ 𝜀𝑖𝜙𝑖
6
𝑖=1 − ℎ ∑ 𝜀𝑖𝜙0

6
𝑖=1 − 𝜅2ℎ3𝜙0 + 4𝜋𝑞0 = 0. (13)

Defining

𝐺(𝜙0) = ℎ ∑ 𝜀𝑖𝜙𝑖

6

𝑖=1

− ℎ ∑ 𝜀𝑖𝜙0

6

𝑖=1

− 𝜅2ℎ3𝜙0 + 4𝜋𝑞0, (14)

one can calculate 𝐺′(𝜙0) as

𝑑𝐺

𝑑𝜙0
= −ℎ ∑ 𝜀𝑖

6

𝑖=1

− ℎ3𝜅2. (15)

Substituting Eqs (14) and (15) in the Newton’s algorithm yields

𝜙0
𝑛+1 = 𝜙0

𝑛 −
𝐺(𝜙0

𝑛)

𝑑𝐺
𝑑𝜙0

(𝜙0
𝑛)

= 𝜙0
𝑛 −

ℎ ∑ 𝜀𝑖𝜙𝑖
𝑛6

𝑖=1 − ℎ ∑ 𝜀𝑖𝜙0
𝑛6

𝑖=1 − 𝜅2ℎ3𝜙0
𝑛 + 4𝜋𝑞0

−ℎ ∑ 𝜀𝑖
6
𝑖=1 − ℎ3𝜅2

=
∑ 𝜀𝑖𝜙𝑖

𝑛6
𝑖=1 +

4𝜋𝑞0

ℎ
∑ 𝜀𝑖

6
𝑖=1 + (𝜅ℎ)2

 (16)

for solving the LPBE.

Equation (16) is actually the same as Eq (6). That is, both SOR and NWT methods utilize the

same numerical formula to solve the LPBE. Thus, it is expected that these two methods are equally

accurate and efficient for solving the LPBE. An example is provided in the supplementary material to

numerically verify that implementations of these two methods in DelPhi are indeed equally accurate

and efficient. Therefore, we will concentrate on comparing their performance when different

formulas are actually used to solve the NLPBE in the remaining of this work.

6265

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259–6277.

The novelty of the NWT method is two-fold. First, Eq (12) is derived by applying the Newton

algorithm on discretized equations obtained from the original PBE, while other Newton-type PBE

solvers in the literature, to our best knowledge, are obtained by applying the Newton’s algorithm

directly on the original PBE. Secondly, this NWT method is implemented in a way to inherit all

unique computational techniques, except the ―excess charge‖, already implemented in the DelPhi

solver. One can view this new NWT method as a DelPhi-specialized Newton-like method which is

not seen elsewhere.

2.4. Comparison

Three iteration formulas, Eqs (5), (9) and (12), have been presented in this section for solving

the NLPBE. It will be interesting to compare them side by side and provide our understanding of

these iteration formulas. In order to simplify the discussions, we assume that a mesh size ℎ is fixed

and ℎ ≪ 1. We focus on just one iteration step, the nth iteration, in which the potential 𝜙0
𝑛 at an

arbitrary grid is evolved to 𝜙0
𝑛+1 by one of these three formulas. Moreover, we assume all potentials

on the right-hand side of three equations all take on the same values in the nth iteration step. Noticing

that the three formulas become identical at grids inside the molecule/protein because the modified

Debye-Huckel parameter 𝜅(𝑥) = 0 in this case. Therefore, performance differences can only be

observed at grids immersed in water. We thus limit our analysis to the solvent domain, where the

potential function is smooth and bounded because no point charges locate there. Thus, in the water, it

is reasonable to assume 𝜙𝑖
𝑛 ≈ 𝜙0

𝑛, 𝑖 = 1, … ,6 in these formulas for a small but fixed ℎ. When being

stable, these three formulas will converge to the same solution as n goes to infinity. Such a solution

will be called the algebraic solution, which satisfies the finite difference discretization of the NLPBE,

i.e., Eq (3).

We will investigate these three formulas in two aspects, i.e., compare their convergence rates

and analyze their stabilities when the potential is large. Equation (5) is considered first. When 𝜙0
𝑛 is

small, Eq (5) is reduced to Eq (6) by approximating sinh(𝜙0
𝑛) ≈ 𝜙0

𝑛. In addition, by the assumption

of 𝜙𝑖
𝑛 ≈ 𝜙0

𝑛, 𝑖 = 1, … ,6, Eq (5) can be viewed as a linear function, 𝜙0
𝑛+1 ≈ 𝑎𝜙0

𝑛 + 𝑏 for some

constants 𝑎 and 𝑏, where 0 < 𝑎 < 1. Thus, 𝜙0
𝑛+1 converges in a linear rate with respect to 𝜙0

𝑛.

When 𝜙0
𝑛 is large but still on track, the right-hand side of Eq (5) has a much large denominator than

that of Eq (6) because
sinh(𝜙0

𝑛)

𝜙0
𝑛 ≫ 1. This drives Eq (6) to converge to the NLPBE potential.

Nevertheless, when 𝜙0
𝑛 is large and away from the limiting value, stability has to be analyzed.

Assuming 𝜙𝑖
𝑛 ≈ 𝜙0

𝑛 and neglecting constants, the dominate term of Eq (5) can be expressed as

𝐶(𝜙0
𝑛)2/ sinh(𝜙0

𝑛) for some constant 𝐶 . Because the denominator is much larger than the

numerator, this iteration will not blow up and thus remains stable. In total, we view the series of

potentials *𝜙0
𝑛+1+𝑛=0,1,2,… calculated by Eq (5) are stably converging to the algebraic solution of Eq (3).

However, it is known that *𝜙0
𝑛+1+𝑛=0,1,2,… converges not quickly enough for solving

three-dimensional problems [44].

The SOR method utilizing Eq (9) aims at making the iteration process converge in a faster pace.

To see this, we rewrite Eq (9) as

6266

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259–6277.

𝜙0
𝑛+1 = (∑ 𝜀𝑖𝜙𝑖

𝑛

6

𝑖=1

+
4𝜋𝑞0

ℎ
−

𝜒(𝜅(𝒙)2(sinh(𝜙0
𝑛) − 𝜙0

𝑛))

ℎ
) (∑ 𝜀𝑖

6

𝑖=1

+ (𝜅ℎ)2)⁄

=
∑ 𝜀𝑖𝜙𝑖

𝑛6
𝑖=1 +

4𝜋𝑞0

ℎ
∑ 𝜀𝑖

6
𝑖=1 + (𝜅ℎ)2

−
𝜒(𝜅(𝒙)2(sinh(𝜙0

𝑛) − 𝜙0
𝑛)) ℎ⁄

∑ 𝜀𝑖
6
𝑖=1 + (𝜅ℎ)2

,

 (17)

where the first term on the right-hand side is the same as the right-hand side of Eq (6), and the

second term can be viewed as a ―correction‖ added to the first term for improved convergence rate.

When 𝜙0
𝑛 is small, sinh(𝜙0

𝑛) ≈ 𝜙0
𝑛 so that the correction term does not contribute much to 𝜙0

𝑛+1.

In this case Eq (9) converges in a similar rate as that of Eqs (5) and (6). When 𝜙0
𝑛 is large,

sinh(𝜙0
𝑛) − 𝜙0

𝑛 ≫ 1 and (sinh(𝜙0
𝑛) − 𝜙0

𝑛) ℎ⁄ is even larger provided ℎ ≪ 1 so that the

correction term becomes a significant portion in 𝜙0
𝑛+1 and drives 𝜙0

𝑛+1 in an accelerated pace

towards the algebraic solution of the discretized NLPBE. However, the correction term could also

introduce additional issues. When 𝜙0
𝑛 ≫ 1, the value of (sinh(𝜙0

𝑛) − 𝜙0
𝑛) ℎ⁄ could drive 𝜙0

𝑛+1

stride to be overshot the solution. Assuming 𝜙𝑖
𝑛 ≈ 𝜙0

𝑛 and neglecting constants, the dominate term

of Eq (6) takes a form of 𝑎 𝑠𝑖𝑛ℎ(𝜙0
𝑛) − 𝑏𝜙0

𝑛 for some constants a and b. Consequently, the

potential could grow exponentially, and the whole iteration process quickly diverges. DelPhi utilizes

a couple of relaxations parameters, 𝜔 in Eq (7) and 𝜒 in Eq (9), in order to pull 𝜙0
𝑛+1 back to the

range of the solution in the overshot situation. These relaxation techniques work in most situations,

but there is no guarantee that they are always effective. For instance, one ―crashing‖ example is

demonstrated in the next section that the SOR method faces severe difficulties to converge.

Equation (9) has been proven to cope with most cases in practice and it has other advantages over

Eq (5). First of all, it allows the same computational and programming techniques flawlessly shared

between solving the LPBE and NLPBE. Secondly, the denominator on the right-hand side of Eq (9) is

unchanged in all iterations so that it can be calculated once, saved and then reused in all iterations. It is

very computationally economical. Third, Eq (9) can collaborate with other advanced techniques in

DelPhi, resulting in one of the best PBE solvers in the world. Overall, we believe the SOR method

implemented in DelPhi is an effective method to solve the NLPBE for three-dimensional problems.

The newly developed NWT method utilizes Eq (12) in order to maintain stability when solving

the NLPBE for problems with strong nonlinearity, while it is still able to converge in a rate faster than

the method using Eq (5). To see this, we rewrite Eq (12) as

𝜙0
𝑛+1 =

∑ 𝜀𝑖𝜙𝑖
𝑛6

𝑖=1 +
4𝜋𝑞0

ℎ
+ (𝜅ℎ)2(𝜙0

𝑛 cosh(𝜙0
𝑛) − sinh(𝜙0

𝑛))

∑ 𝜀𝑖
6
𝑖=1 + (𝜅ℎ)2 cosh(𝜙0

𝑛)

=
∑ 𝜀𝑖𝜙𝑖

𝑛6
𝑖=1 +

4𝜋𝑞0

ℎ
∑ 𝜀𝑖

6
𝑖=1 + (𝜅ℎ)2 cosh(𝜙0

𝑛)
+

(𝜅ℎ)2(𝜙0
𝑛 cosh(𝜙0

𝑛) − sinh(𝜙0
𝑛))

∑ 𝜀𝑖
6
𝑖=1 + (𝜅ℎ)2 cosh(𝜙0

𝑛)

=
∑ 𝜀𝑖𝜙𝑖

𝑛6
𝑖=1 +

4𝜋𝑞0

ℎ
∑ 𝜀𝑖

6
𝑖=1 + (𝜅ℎ)2 cosh(𝜙0

𝑛)
+

(𝜅ℎ)2(𝜙0
𝑛 − tanh(𝜙0

𝑛))

∑ 𝜀𝑖
6
𝑖=1 / cosh(𝜙0

𝑛) + (𝜅ℎ)2
,

 (18)

where the first term on the right-hand side is similar to that of Eq (17) with one additional cosh(𝜙0
𝑛) in

6267

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259–6277.

the denominator, and the second term, which is still called the correction term, is new in the NWT

method. When 𝜙0
𝑛 is small, the first term is practically the same as that of Eq (17) because cosh(𝜙0

𝑛) ≈

1, and the second term vanishes because tanh(𝜙0
𝑛) ≈ 𝜙0

𝑛. In this case Eq (12) converges in a similar

rate as that of Eqs (5), (6) and (9). When 𝜙0
𝑛 is large but still on track, |sinh(𝜙0

𝑛) | ≈ cosh(𝜙0
𝑛) ≫

|𝜙0
𝑛| > 1 so that the first term on the right-hand side of Eq (18) is smaller than the right-hand

side of Eq (5). Together with the second term, this will drive the potential convergent to the algebraic

solution of the discretized NLPBE in a faster pace than that of Eq (5). When 𝜙0
𝑛 is large and far apart

from the algebraic solution, the dominate term of Eq (12) behaves like 𝑎𝜙0
𝑛 + 𝑏 tanh(𝜙0

𝑛) +

𝑐𝜙0
𝑛/ cosh(𝜙0

𝑛) for some constants a, b, and c by assuming 𝜙𝑖
𝑛 ≈ 𝜙0

𝑛 and neglecting constants. This

iteration only grows linearly as 𝜙0
𝑛 increases. This is essentially why the NWT method is more stable

than the SOR method.

In summary, we believe that Eq (5) could provide a stable method to solve the NLPBE. However, its

relatively low convergence rate makes it unsuitable to solve the NLPBE for three-dimensional problems.

The SOR method improves the convergence rate by an ―exponential‖ correction term. This correction

term allows the iterations progress in a fast pace, but it could lead to unexpected divergence for problems

with high nonlinearity. The NWT method substitutes the correction term with a moderate one to balance

the needs for both efficiency and stability, and we expect it to be a useful alternative of the SOR method

in DelPhi to solve problems with high nonlinearity.

3. Results

Benchmarks are presented to compare the SOR and NWT methods in this section. Both methods

have been implemented in DelPhi using the same computational and programing techniques. A wide

selection of examples was tested, and three examples are chosen to demonstrate due to the limited length

of this work.

Example 1. In the first example, we show that both methods are capable of producing close

numerical approximations to the algebraic solution of the discretized NLPBE at a given mesh size ℎ. To

this end, a basic example of barnase-barstar complex (subfigure in Figure 2b) is borrowed from DelPhi’s

online example repository http://compbio.clemson.edu/delphi and the NLPBE is solved for this complex.

Two potential-dependent energies, the total grid energy 𝐺𝑔 and the corrected reaction field (RXN)

energy 𝐺𝑟, are used to compare the accuracy of the two methods.

The first series of benchmarks is conducted to show that both methods produce closer

approximations as the mesh size ℎ diminishes. In DelPhi the mesh size ℎ is controlled by a parameter

scale, defined to be the number of grids per angstrom. The mesh size ℎ decreases as the scale increases.

In this series of benchmarks, the tolerance is fixed, TOL = 1.0E−4, and the scale is varied from

scale = 0.5 (29 grids per direction) to scale = 5.0 (293 grids per direction). Energies obtained by the SOR

and NWT methods are denoted by 𝐺𝑔
𝑆𝑂𝑅, 𝐺𝑟

𝑆𝑂𝑅, 𝐺𝑔
𝑁𝑊𝑇 and 𝐺𝑟

𝑁𝑊𝑇, respectively. Results are shown in

Figure 2.

Obtained energies are shown in Figure 2a,b first. In both subfigures, it is noticed that energies

obtained by the SOR method are always slightly larger than their comparative partners obtained by the

NWT method at all tested scales. It shall be pointed out that it may not be the case for other molecules

and proteins. It could just be caused by, for instance, the parameter values used in the tests, the initial

values used for the iterations, and other factors. Nevertheless, close energies obtained by the two methods

at all tested scales evidently demonstrate that they are converging to the exact energies. More detailed

comparisons were performed and reported in Figure 2c,d. In these subfigures, the differences, defined as

6268

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259–6277.

𝐺𝑔
𝑆𝑂𝑅 − 𝐺𝑔

𝑁𝑊𝑇 and so on, and the relative differences, defined as (𝐺𝑔
𝑆𝑂𝑅 − 𝐺𝑔

𝑁𝑊𝑇) 𝐺𝑔
𝑆𝑂𝑅⁄ × 100% and so on,

are shown. The differences, except those at a low scale = 1.0, are seen to approach to a value as small as

< 5 KT as the scale increases (Figure 2c), while the relative differences, starting with an already low

percentage ≈ 1.7%, consistently converge to zero as the scale increases (Figure 2d).

a

b

c

d

e

Figure 2. Benchmarks obtained by the SOR and NWT methods with a fixed tolerance

TOL = 1.0E−4 and various scales in Example 1. (a) Grid energies. (b) Reaction field

energies. (c) Differences. (d) Relative differences. (e) CPU time.

6269

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259–6277.

In the light that both methods acquire close approximations at all tested scales, and the

approximations are getting closer as the scale increases, we conclude that both methods are obtaining

close approximations to the same algebraic solutions of the NLPBE at all tested mesh sizes in this

example.

a

b

c

d

Figure 3. Benchmarks obtained by the SOR and NWT methods with a fixed scale = 2.0

and various tolerances in Example 1. (a) Grid energies. (b) Reaction field energies. (c)

Differences. (d) Relative differences.

Corresponding execution time of the DelPhi program is demonstrated in Figure 2e to compare

the efficiency of these two methods. One can see that the SOR method costs less time, and therefore

is more efficient, at all tested scales. It is primarily due to two reasons. First, the SOR method starts

off the nonlinear iterations with better initial values achieved by solving the LPBE for a few dozens

of iterations. This numerical treatment significantly reduces the numbers of more costly nonlinear

iterations. On the other hand, the NWT method merely uses the default initial values (zeros on all

grids) without additional treatments. Secondly, by reusing the saved denominator, each iteration of

the SOR method is computationally cheaper than that of the NWT method. As a consequence, the

SOR method is found to be more computationally efficient than the NWT method for solving the

NLPBE in this example, and it is believed to be the case for many other problems as well.

6270

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259–6277.

It has been shown that both methods are capable of achieving close approximations at all scales.

We are also interested to see that how fast, in terms of the number of iterations, these two methods

can achieve their best approximations at a given scale. To this end, the second series of benchmarks

is performed by fixing the scale = 3.0 (175 grids per direction) and varying the tolerance from

1.0E−1 to 1.0E−7. It is naturally expected that both methods will take more iterations, and therefore

produce more accurate energies, when smaller tolerance is used. The results shown in Figure 3 match

our expectation. Semi-log plots (the horizontal axis is the logarithm of the tolerance) are used in

Figure 3 that the scale decreases from the right to left.

Energies, 𝐺𝑔 and 𝐺𝑟, obtained by the two methods are presented in Figure 3a,b. One can see

that the SOR method shows its stunning efficiency in this example. The obtained curves for the SOR

method (pink curves) are almost flat in both subfigures, implying that the SOR method achieves its

best approximations without requiring many iterations. In contrast, the NWT method (blue curves)

behaves differently: it takes less iterations and achieves coarser approximations when the tolerance is

large, and it takes more iterations and obtains finer approximations as the tolerance is smaller. The

observed different convergent trends of these two methods can be explained using Eqs (17) and (18).

The SOR method tends to add a ―big‖ correction in each iteration to pull 𝜙0
𝑛+1 into the range of its

best approximation as quickly as possible, so that it does not take too many iterations to attain its best

approximation despite which tolerance is actually used. On the contrary, the NWT method adds a

moderate correction in each iteration so that it takes more iterations to attain its best, and the

approximations are observed to gradually approach to the best as the tolerance decreases. Another

important observation on Figure 3a,b is that 𝐺𝑟
𝑁𝑊𝑇 is larger than 𝐺𝑟

𝑆𝑂𝑅 at tolerance = 1.0E−1 in

Figure 3b. Thus, it is not true that the NWT method always obtains smaller energies.

Differences and relative differences are presented in Figure 3c,d. In both subfigures, all

differences and relative differences are found to converge as the tolerance decreases. At the smallest

tolerance = 1.0E−7, the differences of 𝐺𝑔 and 𝐺𝑟 are found to be as close as < 5 KT in Figure 3c,

and the relative differences are found to be as close as < 0.005% in Figure 3d. CPU times of this

series of benchmarks are omitted because they are consistent to what shown in Figure 2e—the SOR

method is more time consuming than the SOR method in all tested cases.

Example 2. Results obtained in the first example have provided some insights on the

performance of the two methods. We continue to study these two methods for a blindly selected

group of proteins. This group of proteins is composed of 15 dimers, and each of them consists of two

monomers, namely monomer A and B. More energies, in addition to 𝐺𝑔 and 𝐺𝑟, returned by DelPhi

will be reported in this example. In particular, they will be used to calculate the binding energy,

denoted by ΔG(bind), in this example. Two approaches were suggested in the work [34] to calculate

the binding energy. The first approach (approach 1) calculates the electrostatic component of the

binding energy from the total nonlinear grid energies of the complex, monomer A and B by

ΔG1(bind) = 𝐺𝑔(complex) − 𝐺𝑔(A) − 𝐺𝑔(B), (19)

and the second approach (approach 2) calculates the binding energy from partitioned energies by

ΔG2(bind) = Δ𝐺𝑟 + Δ𝐺𝜌 + Δ𝐺𝑜 + Δ𝐺𝑖 + Δ𝐺𝑐. (20)

where 𝐺𝑔 and 𝐺𝑟 again denote the total grid energy and the corrected reaction field energy,

6271

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259–6277.

respectively, 𝐺𝜌 denotes the
𝜌

𝜙
∗ 2 term in solution, 𝐺0 denotes the osmotic pressure term, 𝐺𝑖

denotes the direct ionic contribution inside the box, 𝐺𝑐 denotes the Coulombic energy, and Δ𝐺∎

with the subscript ∎ = 𝑟, 𝜌, 𝑜, 𝑖, 𝑐 denotes corresponding partitioned energy similar to that defined

in Eq (19). Even though ΔG1(bind) and ΔG2(bind) are both used to approximate the exact

binding energy ΔG(bind), it has been pointed out in the work [34] that they are actually slightly

different due to the fact that approach 1 does not fully cancel ―artificial grid energy‖ arising from real

charges partitioning onto the grids. Thus, ΔG1(bind) is always slightly larger than ΔG2(bind).

Approach 2 via the energy partition technique does not have such issue so that it is recommended

over approach 1.

We first show that binding energies calculated via those returned by DelPhi in solving the

NLPBE via the SOR and NWT methods are close. To this end, binding energies calculated by both

approaches are demonstrated for one dimer, 1fle. The NLPBE is solved by the SOR and NWT

methods with a fixed tolerance = 1.0E−4 and various scales. Calculated binding energies are denoted

by ΔG1
SOR(bind) , ΔG2

SOR(bind) , ΔG1
NWT(bind) , and ΔG2

NWT(bind) , respectively, and

demonstrated in Figure 4. A couple of observations can be made on Figure 4. First of all, the two

binding energies have the same trend as those obtained by the SOR method that ΔG1
NWT(bind)

(solid green curve) is always slightly larger than ΔG2
NWT(bind) (dashed brown curve) at all tested

scales. It matches the statements in the work [34]. Secondly, one can see that ΔG1
SOR(bind) and

ΔG1
NWT(bind) (two solid curves) converge to ΔG1(bind), while ΔG2

SOR(bind) and ΔG2
NWT(bind)

(two dashed curves) converge to ΔG2(bind), as the scale increases. It is also interesting to point out

another important observation, which is not shown in Figure 4. In the benchmarks of dimer 1fle, we

observed that the SOR method is faster than the NWT method in most tested cases. However, there

are a few cases in which the NWT method uses the default 𝜔 = 1.0 and converges without any

issue, while the SOR method needs a smaller relaxation parameter, 𝜔 = 0.5, in order to converge.

When it occurs, the SOR method takes significantly more iterations and becomes slower than the

NWT method.

Figure 4. Binding energies obtained by solving the NLPBE via the SOR and NWT

methods with a fixed tolerance TOL = 1.0E−4 and various scales for dimer 1fle in

Example 2.

6272

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259–6277.

The next series of benchmarks was performed to calculate the binding energies at a fixed

scale = 2.0 (the most commonly used scale in practice) for all 15 dimers. Results are presented in

Figure 5

a

b

c

Figure 5. Binding energies and partitioned energies obtained on 15 dimes in Example 2.

(a) Binding energies obtained by the SOR method (left panel) and the NWT method

(right panel). (b) Percentages of partitioned energies in the binding energy ΔG2
SOR(bind).

(c) Percentages of partitioned energies in the binding energy ΔG2
NWT(bind). Partitioned

energies with large magnitudes are shown on the left panel and the remaining energies

are shown on the right panel in Figure 5b,c.

In Figure 5a, the SOR-generated binding energies (ΔG1
SOR(bind) and ΔG2

SOR(bind)) are

demonstrated on the left panel, and the NWT-generated binding energies (ΔG1
NWT(bind) and

6273

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259–6277.

ΔG2
NWT(bind)) are demonstrated on the right panel. By comparing each blue bar to its paired orange

bar on both panels, one can see that the binding energies obtained by approach 1 are always larger

than those obtained by approach 2 for all 15 proteins. It is the case for both SOR and NWT methods.

Next, by comparing bars in the same color for each dimer on the left and right panels, one can see

visible differences on the SOR- and NWT- generated binding energies. However, given the

experiences achieved for dimer 1fle, it is reasonable to expect that these differences are going to

diminish if a larger scale is used.

We are interested in seeing how much each individual partitioned energy contributes in the

calculated binding energies. Taking ΔG2(bind) calculated by Eq (20) in approach 2 as an example,

the percentages of partitioned energies in the binding energy, defined as Δ𝐺∎ ΔG2(bind)⁄ × 100%,

are shown in Figure5b for the SOR method, and Figure 5c for the NWT method, respectively.

Percentages of two partitioned energies, Δ𝐺𝑟 and Δ𝐺𝑐, are found to be significantly larger than

those of other partitioned energies. Therefore, they are presented on the left panel and others are

presented on the right panel in both Figure 5b,c. In these subfigures, one can see that Δ𝐺𝑟 and Δ𝐺𝑐

are always in opposite signs for all 15 dimers, and their sum, Δ𝐺𝑟 + Δ𝐺𝑐, contributes more than 90%

of ΔG2(bind), while the sum of the remaining three, Δ𝐺𝜌 + Δ𝐺𝑜 + Δ𝐺𝑖, contributes less than 10%

of ΔG2(bind), for all 15 dimers. Moreover, by comparing corresponding energies, it is easy to see

that the two methods, SOR and NWT, not only produce similar binding energy ΔG2(bind) as a sum

of 5 partitioned energies, but also produce similar individual partitioned energy. These partitioned

energies, except the partitioned Coulombic energy Δ𝐺𝑐, all depend on the potentials calculated via

the SOR and NWT methods. It suggests that the two methods indeed produce close potentials for all

15 dimers.

Above experiments at scale = 2.0 were repeated at a doubled scale, scale = 4.0, and the

differences shown in Figure 5 are found to be consistently smaller for all 15 dimers. It evidently

shows that one can confidently relies on the energies produced by DelPhi using either method when

the iteration process converges at the end. Moreover, we have observed more cases in which the SOR

method requires smaller relaxation parameter to converge, while the NWT method has no such issue

at all, in the cases tested at scale = 4.0. It inspires us to perform more tests to examine the stability of

the two methods.

Example 3. It has been observed in Example 2 that the SOR method may require smaller

relaxation parameter in order to successfully converge in some cases, while the NWT method never

has such issue. Out of abundance of caution, a ―crashing‖ example is purposely created and

examined to numerically verify that the NWT method is still able to converge even in some rare and

extreme scenarios before we claim that the NWT is a strongly stable method for solving the NLPBE.

This example was tested with a fixed tolerance, TOL = 1.0E−4, and numerous scales ranging

from 1.0 to 5.0. This example is believed to be ―bizarre‖ that the iteration process of the SOR method

can never be terminated by meeting the desired tolerance at all tested scales. The iteration process is

hindered only after a few iterations when the differences of calculated potentials in two successive

iterations are large at some grids, causing the SOR method relentlessly seek for smaller relaxation

parameter 𝜔 to reduce these differences before moving forward to the next iteration. This effort

repeats many times in each of the first several iterations and prevents the iterations progress properly

towards the end. As a consequence, the SOR method fails to produce any energies in this example

after waiting for a long time.

6274

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259–6277.

It is a completely different story for the NWT method. The NWT method merely uses the

default 𝜔 = 1.0 and converges successfully in all tested cases. Energies produced by DelPhi

running the NWT method are presented by a semi-log plot (the vertical axis is the logarithms of the

absolute values of the energies) in Figure 6. One can see that all energies behave normally without

any unanticipated outcomes.

Figure 6. DelPhi returned energies obtained by solving the NLPBE via the NWT method

with a fixed tolerance = 1.0E−4 in Example 3.

Additional examples beside Example 3 have been tested as well and we have not seen one case

that the NWT method fails to converge. The experiences we earned make us confidently claim that

the newly developed NWT method is a reliable alternative to solve the NLPBE for problems with

high nonlinearity. Meanwhile, bearing in mind that the SOR method is still more efficient in many

cases, the SOR method is still recommended to solve the LPBE/NLPBE when no divergence issue

takes place. In the cases that the SOR method has troubles to converge, one can immediately observe

in DelPhi’s outputs that the iteration stops progressing forward, the relaxation parameter becomes

smaller, and the calculated tolerances get larger. It will be enough to tell that the SOR method is

having troubles to converge, and it is advised to stop the program and switch to the NWT method.

4. Discussions and conclusions

In this work, a newly developed Newton-like method is proposed. It has been implemented in

the DelPhi program to solve the PBE for electrostatic potentials. It has been demonstrated that the

NWT method is relatively slower, equally accurate, and more stable compared to the SOR method

6275

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259–6277.

for solving the NLPBE. The merits of the new NWT method make it a valuable add-on to the DelPhi

program. The NWT method is recommended to the computational molecular society to solve the

NLPBE for problems with strong nonlinearity when other solvers have trouble to converge and

deliver reliable solutions. Developments to improve the efficiency of the NWT method will be

carried out and reported in the future.

Acknowledgments

The research of E.A. and C.L was supported by a grant from NIH, grant number R01GM093937.

The research of S.Z. was supported in part by National Science Foundation under grant

DMS-1812930.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

References

1. G. A. Cisneros, M. Karttunen, P. Ren, C. Sagui, Classical electrostatics for biomolecular

simulations, Chem. Rev., 114 (2014), 779−814.

2. B. Honig, A. Nicholls, Classical electrostatics in biology and chemistry, Science, 268 (1995),

1144−1149.

3. Z. Zhang, S. Witham, E. Alexov, On the role of electrostatics in protein–protein interactions,

Phys. Biol., 8 (2011), 035001.

4. J. Batra, A. Szabó, T. R. Caulfield, A. S. Soares, M. Sahin-Tóth, E. S. Radisky, Long-range

electrostatic complementarity governs substrate recognition by human chymotrypsin C, a key

regulator of digestive enzyme activation, J. Biol. Chem. 288 (2013), 9848−9859.

5. H. Ikeuchi, Y. M. Ahn, T. Otokawa, B. Watanabe, L. Hegazy, J. Hiratake, et al., A

sulfoximine-based inhibitor of human asparagine synthetase kills L-asparaginase-resistant

leukemia cells, Bioorg. Med. Chem., 20 (2012), 5915−5927.

6. X. Huang, F. Dong, H. X. Zhou, Electrostatic recognition and induced fit in the κ-PVIIA toxin

binding to Shaker potassium channel, J. Am. Chem. Soc., 127 (2005), 6836−6849.

7. E. Alexov, Numerical calculations of the pH of maximal protein stability: The effect of the

sequence composition and three-dimensional structure, Eur. J. Biochemi., 271 (2004), 173−185.

8. A. Isvoran, C. Craescu, E. Alexov, Electrostatic control of the overall shape of calmodulin:

numerical calculations, Eur. Biophy. J., 36 (2007), 225−237.

9. R. C. Mitra, Z. Zhang, E. Alexov, In silico modeling of pH-optimum of protein–protein binding,

Proteins: Struct., Funct., Bioinf., 79 (2011), 925−936.

10. A. V. Onufriev, E. Alexov, Protonation and pK changes in protein–ligand binding, Q. Rev.

Biophys., 46 (2013), 181−209.

11. K. Talley, E. Alexov, On the pH‐optimum of activity and stability of proteins, Proteins: Struct.,

Funct., Bioinf., 78 (2010), 2699−2706.

12. M. Petukh, T. Kimmet, E. Alexov, BION web server: predicting non-specifically bound surface

ions, Bioinformatics, 29 (2013), 805−806.

6276

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259–6277.

13. M. Petukh, M. Zhang, E. Alexov, Statistical investigation of surface bound ions and further

development of BION server to include p H and salt dependence, J. Comput. Chem., 36 (2015),

2381−2393.

14. M. Petukh, M. Zhenirovskyy, C. Li, L. Li, L. Wang, E. Alexov, Predicting nonspecific ion

binding using DelPhi, Biophys. J., 102 (2012), 2885−2893.

15. E. Alexov, E. L. Mehler, N. Baker, A. M. Baptista, Y. Huang, F. Milletti, et al., Progress in the

prediction of pKa values in proteins, Proteins: Struct., Funct., Bioinf., 79 (2011), 3260−3275.

16. R. E. Georgescu, E. G. Alexov, M. R. Gunner, Combining conformational flexibility and

continuum electrostatics for calculating pKas in proteins, Biophys. J., 83 (2002), 1731−1748.

17. M. R. Gunner, N. A. Baker, Continuum electrostatics approaches to calculating pKas and Ems in

proteins, Methods Enzymol., 578 (2016), 1−20.

18. C. Bertonati, B. Honig, E. Alexov, Poisson-Boltzmann calculations of nonspecific salt effects on

protein-protein binding free energies, Biophys. J., 92 (2007), 1891−1899.

19. J. H. Bredenberg, C. Russo, M. O. Fenley, Salt-mediated electrostatics in the association of

TATA binding proteins to DNA: a combined molecular mechanics/Poisson-Boltzmann study,

Biophys. J., 94 (2008), 4634−4645.

20. A. Ghosh, C. S. Rapp, R. A. Friesner, Generalized Born model based on a surface integral

formulation, J. Phys. Chem. B, 102 (1998), 10983−10990.

21. P. Grochowski, J. Trylska, Continuum molecular electrostatics, salt effects, and counterion

binding—a review of the Poisson–Boltzmann theory and its modifications, Biopolym.: Orig. Res.

Biomol., 89 (2008), 93−113.

22. N. A. Baker, Poisson–Boltzmann methods for biomolecular electrostatics, Methods Enzymol.,

383 (2004), 94−118.

23. L. Xiao, J. Diao, D. A. Greene, J. Wang, R. Luo, A continuum Poisson–Boltzmann model for

membrane channel proteins, J. Chem. Theory Comput., 13 (2017), 3398−3412.

24. C. Li, L. Li, M. Petukh, E Alexov, Progress in developing Poisson-Boltzmann equation solvers,

Comput. Math. Biophys., 1 (2013), 42−62.

25. J. Mongan, C. Simmerling, J. A. McCammon, D. A. Case, A. Onufriev, Generalized Born model

with a simple, robust molecular volume correction, J. Chem. Theory Comput., 3 (2007),

156−169.

26. M. Feig, A. Onufriev, M. S. Lee, W. Im, D. A. Case, C. L. Brooks III, Performance comparison

of generalized born and Poisson methods in the calculation of electrostatic solvation energies for

protein structures, J. Comput. Chem., 25 (2004), 265−284.

27. L. Li, C. Li, S. Sarkar, J. Zhang, S. Witham, Z. Zhang, et al., DelPhi: A comprehensive suite for

DelPhi software and associated resources, BMC Biophys., 5 (2012), 9.

28. W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera, B. Honig, Rapid grid‐based

construction of the molecular surface and the use of induced surface charge to calculate reaction

field energies: Applications to the molecular systems and geometric objects, J. Comput. Chem.,

23 (2002), 128−137.

29. W. M. Botello-Smith, X. Liu, Q. Cai, Z. Li, H. Zhao, R. Luo, Numerical Poisson–Boltzmann

model for continuum membrane systems, Chemi. Phys. Lett., 555 (2013), 274−281.

30. Y. Zhou, S. Zhao, M. Feig, G. W. Wei, High order matched interface and boundary method for

elliptic equations with discontinuous coefficients and singular sources, J. Comput. Phys., 213

(2006), 1−30.

6277

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259–6277.

31. E. Jurrus, D. Engel, K. Star, K. Monson, J. Brandi, L. E. Felberg, et al., Improvements to the

APBS biomolecular solvation software suite, Protein Sci., 27 (2018), 112−128.

32. A. H. Boschitsch, M. O. Fenley, A new outer boundary formulation and energy corrections for

the nonlinear Poisson–Boltzmann equation, J. Comput. Chem., 28 (2007), 909−921.

33. A. H. Boschitsch, M. O. Fenley, Hybrid boundary element and finite difference method for

solving the nonlinear Poisson–Boltzmann equation, J. Comput. Chem., 25 (2004), 935−955.

34. C. Li, Z. Jia, A. Chakravorty, S. Pahari, Y. Peng, S. Basu, et al., DelPhi Suite: New

Developments and Review of Functionalities, J. Comput. Chem., 40 (2019), 2502−2508.

35. I. Klapper, R. Hagstrom, R. Fine, K. Sharp, B. Honig, Focusing of electric fields in the active

site of Cu‐Zn superoxide dismutase: Effects of ionic strength and amino‐acid modification,

Proteins: Struct., Funct., Bioinf., 1 (1986), 47−59.

36. W. Im, D. Beglov, B. Roux, Continuum solvation model: computation of electrostatic forces

from numerical solutions to the Poisson-Boltzmann equation, Comput. Phys. Commun., 111

(1998), 59−75.

37. W. Rocchia, E. Alexov, B. Honig, Extending the applicability of the nonlinear Poisson−

Boltzmann equation: multiple dielectric constants and multivalent ions, J. Phys. Chem. B, 105

(2001), 6507−6514.

38. B. A. Luty, M. E. Davis, J. A. McCammon, Solving the finite‐difference non‐linear Poisson–

Boltzmann equation, J. Comput. Chem., 13 (1992), 1114−1118.

39. M. J. Holst, F. Saied, Numerical solution of the nonlinear Poisson–Boltzmann equation:

developing more robust and efficient methods, J. Comput. Chem., 16 (1995), 337−364.

40. Q. Cai, M. J. Hsieh, J. Wang, R. Luo, Performance of nonlinear finite-difference Poisson−

Boltzmann solvers, J. Chem. Theory Comput., 6 (2010), 203−211.

41. A. Shestakov, J. Milovich, A. Noy, Solution of the nonlinear Poisson–Boltzmann equation using

pseudo-transient continuation and the finite element method, J. Colloid Interface Sci., 247

(2002), 62−79.

42. A. Sayyed–Ahmad, K. Tuncay, P. J. Ortoleva, Efficient solution technique for solving the

Poisson–Boltzmann equation, J. Comput. Chem., 25 (2004), 1068−1074.

43. W. Geng, S. Zhao, Fully implicit ADI schemes for solving the nonlinear Poisson-Boltzmann

equation, Comput. Math. Biophys., 1 (2013), 109−123.

44. A. Nicholls, B. Honig, A rapid finite difference algorithm, utilizing successive over‐relaxation

to solve the Poisson–Boltzmann equation, J. Comput. Chem., 12 (1991), 435−445.

©2020 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

