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Developing an FFT-Accelerated 
High-Order Solver for Heat 
Equations Over Irregular Domains



The Goal
Magnetic Fluid Hyperthermia (MFH): Use 
magnetic nanoparticles in an alternating 
magnetic field to generate heat

Targeted application of heat can burn out 
tumorous growths in human tissue

But the big question – just how precisely can 
we target when heat spreads over time?



Mathematical Formulation
The Heat Equation: !"!# = 𝛽∆𝑈 + 𝑓

or the Poisson Equation: ∆𝑈 = 𝑓

Subject to the most general boundary conditions:
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Converting to an Immersed Interface
Exterior layers of 
constant value are 
added everywhere 
outside the original 
problem.

This enables fast solving 
later, as our method 
requires periodic 
boundary conditions.



Fictitious Values and Jump Conditions
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For a fourth-order method, we 
need two layers of fictitious values 
outside our original domain.

These fictitious values are 
extrapolated from interior values 
and boundary conditions.

Do we know what they are?  Not 
yet!  But we know how they’d 
behave if they were real, which is 
enough. 
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Augment System
We	express	all	the	equations	
we’ve	been	gathering	as	a	
blockwise system	of	matrices:

Our unknown, U, is a vector 
containing the actual value at every 
point in our domain – but only once 
we solve for it.

𝑨 𝑩
𝑪 𝑰

𝑼
𝑸 = 𝑭

𝝓

Unknown
Vectors

𝑼 = 𝑎𝑙𝑙 𝑢(𝑥!)
𝑸 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠

Known
Matrices

𝑨 = 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑜𝑟 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛

𝑩 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠
𝑪 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠
𝑰 = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥

Vectors
𝑭 = 𝑎𝑙𝑙 𝑓(𝑥!)
𝝓 = 𝑘𝑛𝑜𝑤𝑛 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑣𝑎𝑙𝑢𝑒𝑠



The Fast Fourier Transform
After expressing all of our 
equations as matrices, we’re 
ready to solve – but how to 
actually compute?

The Fast Fourier Transform makes 
a drawn-out process into one 
quick multiplication.
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Gaussian Elimination, O(N3) 

FFT, O(N logN) 



Numerical Experiments - Interfaces

So
lu

tio
n

Er
ro

r



Numerical Experiments - Convergence
Do we get fourth-order accuracy in 
space?

If we do, doubling the number of 
gridlines should cut the error down 
to one sixteenth (1/24) of what it 
was before.

Is this borne out in our 
experiments?  Yes!

Number of 
Points per 
Dimension

Maximum 
Error (LMax)

Average 
Error (L2)

LMax

Order
L2 

Order

65 6.71E-05 1.25E-05

129 3.89E-06 5.86E-07 4.11 4.41

257 1.19E-07 3.74E-08 5.03 3.97

513 6.53E-09 2.35E-09 4.19 3.99

1025 5.34E-10 1.66E-10 3.61 3.82



Numerical Results – 3D
We can solve problems 
on a variety of interface 
irregularities, including 
points, curves, and 
concavities.

The method is 
unconditionally stable, 
fourth-order accurate in 
space, and as fast as 
we’d theorized.

Spheres rotated to show most extreme features



Conclusions
We have succeeded in developing a fast, high-order method for numerically 
solving heat and Poisson equations on irregular domains.

Numerical experiments confirm we our method achieves a fourth-order 
accuracy in space, second-order accuracy in time, and computational complexity 
of O(NtNDlogN).

We hope these methods expand the usefulness of mathematical simulation in 
understanding real-world application of heat flow in irregular situations.
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