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Abstract In this paper, a new Cartesian grid finite difference scheme is in-
troduced for solving parabolic initial-boundary value problems involving ir-
regular domains and Robin boundary condition in two and three dimensions.
In spatial discretization, a ray-casting matched interface and boundary (MIB)
method is utilized to enforce different types of boundary conditions, including
Dirichlet, Neumann, Robin, and their mixed combinations, along the normal
direction to generate necessary fictitious values outside the irregular domain.
This allows accurate approximations of jumps in derivatives at various bound-
ary locations so that the fourth-order central difference can be corrected at
all Cartesian nodes. By treating such corrections as additional unknowns, the
order of finite difference discretization of the Laplacian operator can be pre-
served. Moreover, by constructing corrections for different types of irregular

Chuan Li
Department of Mathematics, West Chester University of Pennsylvania, West Chester, PA
19383, USA
E-mail: cli@wcupa.edu

Yiming Ren
Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA

Guangqing Long
Guangxi Key Lab of Human-Machine Interaction and Intelligent Decision, Nanning Normal
University, Nanning 530001, PR China

Eric Boerman
Department of Mathematics, West Chester University of Pennsylvania, West Chester, PA
19383, USA

Shan Zhao
Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA
E-mail: szhao@ua.edu



2 Chuan Li et al.

and corner points, the proposed augmented MIB (AMIB) method can accom-
modate complicated geometries, while maintaining the fourth order of accu-
racy in space. In temporal discretization, the standard Crank-Nicolson scheme
is employed, which is second-order in time and unconditionally stable. Further-
more, a Fast Sine Transform acceleration algorithm is employed to efficiently
invert the discrete Laplacian, so that the augmented linear system in each
time step can be solved with a complexity of O(N logN), where N stands for
the total spatial degree-of-freedom. The accuracy, stability and efficiency of
the proposed AMIB method are numerically validated by considering various
parabolic problems in two and three dimensions.

Keywords Parabolic initial-boundary value problems · Irregular domains ·
Robin boundary condition · Matched interface and boundary (MIB) · Fast
Fourier transform

Mathematics Subject Classification (2020) 65M06 · 65M85 · 65M12

1 Introduction

This work focuses on solving a parabolic Partial Differential Equation (PDE),

∂u

∂t
= β∆u+ f, (1)

over an irregularly shaped domain Ω in two (2D) or three (3D) dimensional
spaces. The boundary of Ω, denoted by Γ = ∂Ω, is governed by a level set
function or prescribed in a parametric form. See Fig. 1a for a 2D demonstra-
tion. While Γ is fixed, the unknown function u and the source term f in eqn.
(1) could be both time and space dependent, and the diffusion coefficient β > 0
is a constant. An initial condition at t = 0 is given as

u(0,x) = u0(x), (2)

and a generic boundary condition on the boundary Γ is given as

αΓu+ βΓ
∂u

∂n
= φ(t,x), (3)

where x = (x, y) in two dimensions and x = (x, y, z) in three dimensions.
Notice that eqn. (3) represents three commonly used boundary conditions,
i.e., Dirichlet (αΓ 6= 0 and βΓ = 0), Neumann (αΓ = 0 and βΓ 6= 0), and
Robin (αΓ 6= 0 and βΓ 6= 0).

In this work, in order to numerically solve the initial and boundary value
problem (IBVP) formed by eqn. (1) - (3), the domain Ω is embedded inside a
larger regular computational domain D. For instance, the rectangular domain
could be D = [a, b] × [c, d] in 2D. The original IBVP can be reformulated as
an immersed parabolic problem to be solved in the new domain D as shown in
Fig. 1b. In Fig. 1b, the original domain Ω is renamed as Ω−. We also denote
Ω+ = D/Ω− so that D = Ω+∪Ω− and Γ = Ω+∩Ω−. The original boundary
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(a) An IBVP defined in a 2D
complex-shaped domain Ω.

(b) A corresponding immersed
problem defined in a 2D rectan-
gular domain D.

Fig. 1: A demonstration of the original and corresponding immersed problems.

Γ is then treated as an interface splitting the outer subdomain Ω+ and the
inner subdomain Ω−. Points on Γ are then renamed interface points to be
distinguished from boundary points on ∂D. The original boundary condition
(3) is also renamed to be an interface condition which is still required to hold
on the interface Γ .

The solution u and source term f of eqn. (1) are assumed to be extended
to the new domain D as

u(t,x) =

{
u(t,x), if x ∈ Ω−
0, if x ∈ Ω+,

and f(t,x) =

{
f(t,x), if x ∈ Ω−
0, if x ∈ Ω+.

(4)

In what follows, initial condition (2) is extended in a similar manner,

u(0,x) =

{
u0(x), if x ∈ Ω−
0, if x ∈ Ω+,

(5)

and a zero Dirichlet boundary condition,

u(t,x) = 0, for x ∈ ∂D, (6)

is imposed. The reformulated immersed parabolic problem consists of one PDE
(1) with solution and source term piecewisely defined in eqn. (4) in domain
D, an initial condition (5), an interface condition (3) imposed on Γ , and a
boundary condition (6) on ∂D. The solution to eqn. (4) is expected to solve
the original IBVP of eqn. (1) - (3) in subdomain Ω−, as shown in Fig. 1b.

The goal of this work is to develop a new finite difference method for solv-
ing the immersed parabolic problem based on unconditionally stable Crank-
Nicolson time stepping. This new method will not only achieve a fourth order
of accuracy in space while handling irregular domains and complex bound-
ary conditions, but also can deliver a O(N logN) efficiency in solving the
linear system in each time step, where N stands for the total spatial degree-
of-freedom. We note that several high-order numerical methods [23,34,31,37,
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21] have already been developed in the literature for similar problems. A more
detailed review about the existing literature will be offered in the next section.

On the other hand, we note that the present immersed parabolic problem
shares some similarities with the parabolic interface problem [10,45,30], in
which the solution to the heat equation is defined piecewisely for both Ω− and
Ω+, together with two interface conditions governing function jump and flux
jump over Γ and a nontrivial boundary condition on ∂D. Because in parabolic
interface problems more boundary/interface conditions should be satisfied and
the solution in Ω+ needs to be approximated, the numerical development be-
comes more challenging in comparison to the present study of irregular domain
IBVPs. Various jump capturing numerical schemes have been successfully de-
veloped for parabolic interface problems, including finite element methods [10,
30,42,36,50] and finite difference methods [29,45,27,28,39,26,20]. To the best
of our knowledge, while some of these methods could deliver a O(N logN)
efficiency, none of them achieves a fourth order of convergence in space for
curved interfaces.

The rest of this work is organized as follows. In Section 2, we review rele-
vant prior works for immersed parabolic problems. Section 3 provides detailed
descriptions, theoretical results, and performance analysis on the proposed
method. Multiple 2D and 3D numerical examples are tested for convergence
orders, stability, and computational complexity in section 4, followed by the
conclusion of this work in section 5.

2 Relevant literature

Numerous numerical methods have been developed for solving parabolic IBVP
over irregular domain in an immersed setting. In the following, we will highlight
some computational methods that can handle complex geometry and boundary
conditions, or achieve a high order of convergence, or is equipped with fast
algebraic solvers. Some advanced methods for the parabolic interface problem
will be reviewed as well because, though they are designed for more difficult
problems, they could be reformulated to solve the immersed parabolic IBVP
too.

The ghost-fluid method (GFM) was first proposed by Fedkiw et al. [15]
for solving interface problems in multi-material flows. Due to its flexibility
in handling boundary conditions and irregular domains, the GFM has been
successfully applied for solving parabolic PDEs. In [23], Gibou and Fedkiw
introduced a fourth-order finite difference for diffusion equations with Dirichlet
boundary conditions, which is the first high-order (more than second-order)
method for immersed parabolic problems in the literature. The main idea is
to generate ghost values outside Ω along Cartesian directions by using the
Dirichlet boundary condition to construct high-order polynomials. This GFM
has been further improved in [9] by allowing the use of non-graded adaptive
Cartesian grids for capturing small length scales. A review of GFM, as well as
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related level-set methods and quadtree/octree adaptive mesh refinements, is
offered in [24].

In comparison to the Dirichlet boundary condition, the Robin and Neu-
mann conditions are more difficult to be treated numerically. A second-order
accurate finite volume scheme was first developed in [34] for solving Robin
boundary condition over complex domains, which has been generalized to pro-
vide a second-order gradient approximation and for handling piecewise smooth
boundaries in [3]. This finite volume scheme has been combined with oper-
ator splitting and semi-Lagrangian methods in [2] for attacking advection-
diffusion problems with Robin boundary conditions in moving domains. Re-
cently, second-order treatments of Robin conditions or mixed Dirichlet-Neumann-
Robin boundary conditions in GFM-involved finite difference methods have
been introduced in [7,8]. The ghost values in the normal direction are ob-
tained by constructing a linear polynomial and successively extrapolating the
normal derivative using a PDE approach.

The development of high-order (at least third-order) methods for irregular
domain parabolic IBVPs has attracted some attention in the literature. Such
methods are ideal for problems associated with high-frequency solutions and
are usually more cost-efficient than second-order methods. The fourth-order
GFM for Dirichlet problems introduced by Gibou and Fedkiw [23] is one of
the pioneer studies in this direction. The existing high-order methods could
be clarified into two general categories.

In the first category, certain smooth extensions of physical solutions be-
yond the irregular domain are carried out so that high-order discretization
can be established for the entire computational domain. For example, the
Fourier continuation (FC) method introduced in [4,5] is able to construct a
smooth periodic function extension for irregular domain problems and can
overcome the Gibbs phenomenon. Based on it, an alternating-direction fast
solver (FC-AD) has been developed in [6,31] to provide spectral accuracy in
solving parabolic, elliptic, and hyperbolic PDEs with Dirichlet boundary con-
ditions. In [37], a different high-order extension method has been proposed by
using a flexible immersed boundary smooth extension (IBSE). In combination
with the Fourier spectral method, the IBSE attains fourth-order convergence
for Dirichlet problems and third-order convergence for Neumann problems, in
solving several different PDEs. There exist other high-order smooth extension
methods for PDE interface problems, such as the correction function method
[32] and kernel-free boundary integral method [41].

In the second category, several layers of ghost cells or fictitious points are
generated outside the irregular domain Ω, so that high-order finite difference
approximations can be carried out for all mesh points inside Ω. The fourth-
order GFM [23] is one of such methods for treating Dirichlet boundary condi-
tions. An arbitrary-order reconstruction off-site data (ROD) method has been
introduced in [21,11] for enforcing Dirichlet, Neumann or Robin boundary
conditions over irregular domains. By appropriately choosing collar points on
Γ and enough supporting nodes inside Ω, a linear squares fitting is conducted
in the ROD to generate 2D high-order polynomials, which can then produce
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the desired ghost cell values. Up to sixth-order finite difference methods have
been reported for solving several different PDEs [21,11]. A matched interface
and boundary (MIB) method has been developed in [44] for treating perfectly
electric conducting (PEC) boundary conditions over complex domains in solv-
ing Helmholtz eigenvalue problems. Based on it, a ray-casting MIB method has
recently been proposed for solving elliptic PDEs with Dirichlet, Neumann, or
Robin boundary conditions and their mixed combinations [35]. The ray-casting
MIB scheme can achieve arbitrarily high order in handling irregular domains,
and up to eighth order is reported in [35]. Moreover, generalization to 3D PDE
problems has been demonstrated. We note that a potential advantage of the
methods in this category is that the generation of ghost cells or fictitious points
is a process independent from the discretization inside Ω. This is essentially
why such methods can be applied to different PDEs, and could be arbitrarily
high order in principal.

Besides spatial discretization, time integration is also crucial when solving
parabolic problems. Explicit time schemes are simple and cheap in each time
step, but a small time step size ∆t has to be used due to severe stability condi-
tions. Implicit time schemes could be unconditionally stable and thus allow the
use of a large ∆t for long-time integration or steady-state solution problems.
Nevertheless, in each implicit time step, one has to solve a linear system, which
involves all spatial degrees of freedom N . With a generic iterative solver, the
algebraic solution could require a computational complexity around O(N2) in
each time step. For a large N , particularly in multidimensional problems, this
leads to an intractable demand for computational time.

Much research interest has been devoted to developing fast algebraic solvers
for large linear systems, so that the implicit time schemes for parabolic PDEs
could be as efficient as explicit schemes while enjoying the unconditional sta-
bility. The popular fast algorithms in scientific computing include fast Fourier
transform (FFT), multigrid, or alternating directional implicit (ADI) methods,
which have a complexity on the order of O(N) or O(N logN). The FFT algo-
rithm will be employed in the present study for solving the immersed parabolic
problems in O(N logN) speed. However, we note that the FFT could not be
extended to parabolic interface problems, due to the non-constant diffusion
coefficient. An overview of ADI and multigrid techniques is offered below for
parabolic interface problems. These fast algorithms can be applied to immersed
parabolic problems in principle.

The classical ADI method [14] introduced in the 1950s is well known
for its O(N logN) efficiency in solving parabolic PDEs, because one can re-
duce a multidimensional linear system into a sequence of independent one-
dimensional (1D) subsystems of tridiagonal structure and then solve them
efficiently by the Thomas algorithm. It is noted that the state-of-the-art ADI
methods are no longer restricted to rectangular domains. In fact, many recent
ADI methods can handle curved interfaces and/or irregular boundaries while
maintaining O(N logN) efficiency. For example, Li and Mayo [29] introduced
an immersed interface method (IIM) based ADI algorithm, which is the first of
its kind for the parabolic interface problem in a simplified setting with the dif-
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fusion coefficient being a constant throughout. The first ADI algorithm for the
standard parabolic interface problem involving both function and flux jumps
was presented in [45], in which the MIB method [46,49] is adopted for handling
curved interfaces. The MIB-ADI method maintains second-order accuracy in
space for complex geometries in two [45] and three [39] dimensions, including
for variable coefficients [25], but can only attain first-order accuracy in time.
A multiscale IIM-ADI method has been introduced in [28] for general interface
problems, which is able to fulfill second-order accuracy for both spatial and
temporal discretization. The GFM has also been combined with the ADI to
solve parabolic interface problems [26].

Geometric multigrid methods have also been explored for solving PDEs
with complicated geometries. Typically, multigrid interpolation and restric-
tion operators need to be modified near the interfaces and boundaries, and
such modifications have to be specially designed based on the particular nu-
merical procedure for treating the boundary or interface conditions. In par-
ticular, a new multigrid method has to be developed. Nevertheless, such an
effort is worthwhile, because the geometric multigrid methods can guarantee
an O(N) efficiency in real computations. The multigrid method for the IIM
has been constructed by Adams and Li in [1], which preserves the maximum
principle. In [38], the multigrid method has been applied to the boundary-
condition-capturing method for irregular boundary problems. The use of a
multigrid method in combination with ghost values for interface and bound-
ary treatments has been studied in [12] and [13], respectively, for elliptic and
nonlinear diffusion problems. A new multigrid solver has been introduced in
[33] for cell-centered finite volume discretizations of 3D anisotropic diffusion
equations with discontinuous coefficients. In [20], a multigrid scheme has been
constructed for an augmented MIB (AMIB) method to solve parabolic inter-
face problems. In the augmented formulation, one just needs to invert a usual
finite difference matrix so that the standard multigrid procedure can be uti-
lized in the AMIB method. This considerably simplifies the interpolation and
restriction process for the coarse grid operators in the multigrid method [20].
We finally note that the aforementioned ADI and multigrid methods can at
most deliver second order accuracy in space.

The numerical method to be developed in this study is based on the
matched interface and boundary (MIB) method, which was originally devel-
oped as a high-order method for solving Maxwell interface [46] and elliptic in-
terface [49] problems. In [48,43,47], the MIB scheme has been developed into
a systematic approach for handling various general boundary conditions in ar-
bitrarily high-order central schemes over cubic domains. Two recent advance-
ments of the MIB method will be taken advantage of. First, an AMIB method
has been formulated in [16], which introduces Cartesian derivative jumps as
additional unknowns to correct the central difference approximation. With an
enlarged linear system, the discrete Laplacian is the same as that obtained
by usual finite difference discretization, and thus can be inverted by the FFT
algorithm. Consequently, the AMIB method can not only achieve fourth-order
accuracy in solving curved elliptic interface problems, but also attains the FFT
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O(N logN) efficiency [19]. In solving elliptic boundary value problems over a
cubic domain, the AMIB method [18,17] can handle any boundary condition,
is at least fourth-order accurate in two or three dimensions, and enjoys the
FFT efficiency. A multigrid based AMIB method has also been developed for
solving parabolic interface problem [20]. Second, a ray-casting AMIB method
has been constructed in [35] for solving elliptic boundary value problems over
irregular domains. By generating fictitious values in the normal direction or
ray-casting direction, the AMIB method guarantees at least a fourth order
of accuracy in treating Dirichlet, Neumann, and Robin conditions and their
mixed combinations while maintaining the FFT efficiency.

In this work, a new ray-casting AMIB method will be developed for solving
the immersed parabolic problem, which consists of the heat equation (1) and
initial and boundary conditions given in Eqs. (5), (3), and (6). In combination
with the Crank-Nicolson time integration, the new method will be second-
order accurate in time and unconditionally stable. Besides the FFT algorithm,
further acceleration using the LU decomposition algorithm will be explored
for long time integration. The AMIB method can achieve a fourth order of
accuracy in space and is flexible in handling a variety of boundary conditions
imposed on irregularly-shaped Γ .

3 Theory and Algorithm

The proposed AMIB method will be presented in detail for solving immersed
parabolic problems in two dimensions in subsection 3.1 - 3.4. Its extension
to three dimensions can be easily obtained by a tensor product and is briefly
mentioned in subsection 3.5. A computational complexity analysis of the AMIB
method is then conducted in subsection 3.6.

In two dimensions, a uniform mesh spacing, h, is assumed to partition the
rectangular domain D = [a, b]× [c, d] into nx and ny equally spaced intervals
in the x- and y- directions, respectively. That is, nx = (b − a)/h and ny =
(d− c)/h. In the time direction, a constant time step, ∆t, is used to partition
a time interval [0, T ] into nt equally spaced intervals so that nt = T/∆t. The
numerical approximation to the exact solution u(tn, xi, yj) is denoted by uni,j
with tn = n∆t for 0 = t0 < t1 < ... < tnt−1 < tnt = T , xi = a + ih for
a = x0 < x1 < ... < xnx−1 < xnx = b, and yj = c+ jh for c = y0 < y1 < ... <
yny−1 < yny = d. Similar notations are used for the solution u(tn, xi, yj , zk) in
three dimensions where zk = e+ kh for e = z0 < z1 < ... < znz−1 < znz = f .

3.1 Temporal Discretization

In the time direction, the standard Crank-Nicolson (CN) scheme is adopted to
discretize eqn. (1), yielding a semi-discretized finite difference (FD) equation

un+1
i,j − uni,j
∆t

=
β

2

(
∆uni,j +∆un+1

i,j

)
+

1

2

(
fni,j + fn+1

i,j

)
. (7)
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Reorganizing the terms of eqn. (7) results in

(∆− κI)un+1
i,j = − (∆+ κI)uni,j −

1

β

(
fni,j + fn+1

i,j

)
, (8)

where κ = 2
β∆t and I is an identity operator. The two differential operators in

eqn. (8), ∆− κI and ∆+ κI, need to be approximated by appropriate FDs.
In order to obtain fourth-order convergence in space, a 5-point central FD

and its corrections are proposed to approximate the two differential operators.
This central FD and its corrections are applied to different types of mesh points
depending on their relative positions to Γ . As a consequence, the resulting
AMIB method is a high-order (second-order in time and fourth-order in space,
i.e., O(∆t2 +h4)) method for solving immersed parabolic problems in two and
three dimensions.

3.2 A Fourth-Order FD and Its Corrections in Spatial Discretization

In this subsection, a fourth-order FD and its corrections are utilized to approx-
imate the two differential operators, ∆− κI and ∆+ κI, at different types of
mesh points in each time step. Without causing ambiguity, the superscript n
for time steps is suppressed from notations in this subsection. It will be placed
back in subsection 3.3 when the fully discretized method is described.

The ray-casting AMIB method for irregular boundary problems consists
of three steps [35]. First, some fictitious values will be generated by satisfying
the Robin boundary condition. Second, the fourth order central differences
will be corrected by using some jump values on Γ . Finally, the jump values
are reconstructed based on fictitious values. The ray-casting AMIB method is
further improved in this study. In particular, the finite difference corrections
for various corner point cases will be studied, so that the present ray-casting
AMIB method becomes more robust.

3.2.1 Fictitious Values by the Ray-Casting Scheme and Classification of
Interface Points

Consider an irregular boundary or immersed interface Γ , which can be pre-
scribed in parametric form or is determined by a zero level set ϕ(x, y) = 0.
Here ϕ(x, y) < 0 indicates the point inside the domain Ω, while ϕ(x, y) > 0
indicates the point outside Ω.

The ray-casting MIB scheme proposed in [35] is adopted to construct fic-
titious values at mesh points which are close to Γ and positioned in the outer
subdomain Ω+. Such fictitious values will be used to correct the standard FD
at mesh points near the interface. One can view such fictitious values as the
extension of the solution in the inner Ω− across the interface Γ . The extended
values are rigorously determined by the Robin boundary condition (3) imposed
at a point on Γ [35]. In addition, two layers of such mesh points are required, as
shown by red filled circles in Fig. 2, because we are seeking a FD formula with
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Fig. 2: A demonstration of fictitious values, ray-casting scheme, and classifi-
cation of interface points. Fictitious values are constructed at two-layer mesh
points (red filled circles) outside the boundary Γ . For each of such mesh points,
a type-1 interface point (red triangle) is found so that the outer normal direc-
tion (red arrow) at this interface point passes through this mesh point. The
fictitious value at this mesh point is then represented by values at a set of 20
mesh points (black filled circles) in Ω− and the interface condition (3) at one
type-1 interface point. A second type of interface points at which grid lines
cut Γ are also demonstrated by green triangles.

fourth-order accuracy in space. A brief description of the fictitious values and
ray-casting scheme is given as follows, while interested readers are directed to
subsection 2.2 of Ref. [35] for a detailed description of the ray-casting scheme.

A sample mesh point P (xi, yj) (green circle) is shown in Fig. 2 to demon-
strate the construction of fictitious value. An interface point (red triangle),
xΓ , on Γ is found so that P is on the normal direction (−→n ) of Γ at xΓ . Exten-
sion of −→n cuts four consecutive grid lines at four auxiliary points (blue filled
squares) within Ω−. The interface condition (3) at xΓ can then be discretized
by the desired fictitious value and values at the four auxiliary points (blue filled
squares). Due to the fact that these auxiliary points are usually off-grid, their
values are normally not readily available and have to be interpolated again by
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values at nearby mesh points (black filled circles) within Ω−. In total, fictitious
value at P can then be solved and represented in the form of

ûi,j =
∑

(xI ,yJ )∈Si,j

WI,Jui,j +WΓφΓ , (9)

where Si,j is a set of 20 chosen mesh points within the subdomain Ω−, and
φΓ represents the boundary data of eqn. (3) evaluated at xΓ . In fact, eqn.
(9) can be obtained for all three (Dirichlet, Neumann, and Robin) boundary
conditions and even other mixed forms of boundary conditions. All FD weights
involved in eqn. (9) can be calculated via, for example, Fornberg’s method [22].
These weights are calculated once, and saved so that updating fictitious values
can be effectively accomplished in every time step.

Representing fictitious values at all mesh points demonstrated by red filled
circles in Fig. 2 requires eqn. (3) to be evaluated at a set of interface points on
Γ (red triangles). These interface points are named type-1 interface points in
order to distinguish them from another set of interface points described below.

The other set of interface points are those at which Cartesian grid lines
cut the interface Γ . They are denoted by green filled triangles in Fig. 2 and
named type-2 interface points. At type-2 interface points, condition (3) is not
used explicitly, while jump-corrected Taylor expansions suggested in [40] are
adopted to correct the standard FD when it is applied to approximate the
Laplacian operator at mesh points close to Γ so that the desired high order
of accuracy can be well maintained. Since these jump corrections are usually
unknown, they will be treated as additional unknowns and solved together
with unknown function values in an augmented system in each time step.
More detail will be provided in the next subsection.

One constraint we require for the interface points and their closest mesh
points is that, on any grid line, there must exist at least one mesh point
between any two consecutive type-2 interface points so that the local change
of the interface shape can be captured by nearby mesh points according to
their positions inside or outside Γ . Otherwise, a mesh refinement must be
conducted.

3.2.2 A Fourth Order FD and Its Corrections

Interior mesh points, (xi, yj) for i = 1, ..., nx − 1 and j = 1, ..., ny − 1, will
be classified into different categories so that either a standard FD or its cor-
rections will be applied at different mesh points to approximate derivatives
involved in the Laplacian operator. Due to the fact that the two second par-
tial derivatives in the Laplacian operator are treated independently in FD
formulations, FD approximation to the second order partial derivative of x is
chosen to be demonstrated here, while one can follow the same arguments to
handle the derivative of y.

Let (xi, yj) be an interior mesh point on line y = yj and consider the
construction of the FD to approximate the second derivative of x at this mesh
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point. That is, ∂2

∂x2u(xi, yj) ≈ δxxui,j . The mesh point (xi, yj) is named a
regular point when all 5 mesh points involved in the stencil used by the 5-
point central FD

δxxui,j =
1

h2

(
− 1

12
ui−2,j +

4

3
ui−1,j −

5

2
ui,j +

4

3
ui+1,j −

1

12
ui+2,j

)
, (10)

are all positioned on the same side of Γ . In this case, eqn. (10) guarantees a
fourth order of accuracy, O(h4), to approximate the second derivative of x at
(xi, yj).

In contrast, it is possible that there might be one or multiple mesh points in
the stencil are positioned on the opposite of an (type-2) interface point when
(xi, yj) is close to the interface Γ . In this case, eqn. (10) needs to be corrected
by taking into account of the jump values at this interface point, in order to
maintain the desired order of accuracy. This mesh point (xi, yj) is thereby
named an irregular point. Furthermore, an extreme case can occur when two
type-2 interface points are positioned close to each other on the same line such
that there exists only one mesh point between them. When this happens, the
mesh point in between is named a corner point and jump values occurring at
both interface points must be taken into account at the same time to correct
the FD at this mesh point. Such corrections were first suggested in [40] for
central differences. In this study, we will examine all possible cases for the
fourth order 5-point FD stencil.

Corrections of the fourth-order FD (10) at irregular and corner points are
graphically demonstrated in Fig. 3 for different situations. In all subfigures,
xα1

and xα2
are two (type-2) interface points on a grid line y = yj and de-

noted by green filled triangles. Regular points are denoted by red and green
filled dots, depending on their positions in either outside or inside Γ , respec-
tively. Irregular points are demonstrated by green circles, and corner points
are demonstrated by purple circles. In what follows, corrections of the FD (10)
are considered in Theorem 1-4 for various scenarios, while one can obtain FDs
to approximate the second partial derivative of y in a similar manner.

In Fig. 3a, four mesh points are positioned between the two interface points.
In this case, all 7 mesh points are marked as irregular points due to the fact
that the 5 points in the stencil of eqn. (10) scatter precisely across one of the
two interface points. Correction of eqn. (10) at the 4 left-most irregular points
can be obtained by a theorem stated in [40,18,35] using jump values at the left
interface point xα1

. This theorem is restated in Theorem 1 using the notations
shown in Fig. 3a for easy reference. Correction of eqn. (10) at right 3 mesh
points can be obtained in a similar manner by using jump values at the right
interface point xα2

.

Theorem 1 (A corrected fourth order FD at irregular points [40,18,
35]) Let xi < xα1

< xi+1, h− = xi − xα1
, and h+ = xi+1 − xα1

. Suppose
u ∈ C6[xi−1, xα1

] ∩ C6(xα1
, xi+2], with derivative extending continuously up

to the interface point xα1
. Then the following approximations hold to O(h4)
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(a) A pair of type-2 interface points with four
mesh points in between.

(b) A pair of type-2 interface points with two
mesh points in between.

(c) A pair of type-2 interface points with one
mesh point in between.

(d) A pair of type-2 interface points with
three mesh points in between.

Fig. 3: A demonstration of a pair of type 2 interface points and various number
of mesh points in between them, on a horizontal grid line. Mesh points in Ω+

are denoted by red filled circles, mesh points in Ω− are denoted by black filled
circles, and the two interface points are denoted by green triangles. Irregular
points are denoted by green open circles, corner points are denoted by purple
open circles, and regular points are those without green or purple open circles.

when K = 4:

uxx(xi−1) ≈ 1

h2

(
− 1

12
u(xi−3) +

4

3
u(xi−2)− 5

2
u(xi−1) +

4

3
u(xi)−

1

12
u(xi+1)

)
+

1

12h2

K∑
k=0

(h+)k

k!

[
u(k)

]
xα1

, (11)

uxx(xi) ≈
1

h2

(
− 1

12
u(xi−2) +

4

3
u(xi−1)− 5

2
u(xi) +

4

3
u(xi+1)− 1

12
u(xi+2)

)
− 4

3h2

K∑
k=0

(h+)k

k!

[
u(k)

]
xα1

+
1

12h2

K∑
k=0

(h+ h+)k

k!

[
u(k)

]
xα1

, (12)

uxx(xi+1) ≈ 1

h2

(
− 1

12
u(xi−1) +

4

3
u(xi)−

5

2
u(xi+1) +

4

3
u(xi+2)− 1

12
u(xi+3)

)
+

4

3h2

K∑
k=0

(h−)k

k!

[
u(k)

]
xα1

− 1

12h2

K∑
k=0

(h− − h)k

k!

[
u(k)

]
xα1

, (13)

uxx(xi+2) ≈ 1

h2

(
− 1

12
u(xi) +

4

3
u(xi+1)− 5

2
u(xi+2) +

4

3
u(xi+3)− 1

12
u(xi+4)

)
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− 1

12h2

K∑
k=0

(h−)k

k!

[
u(k)

]
xα1

, (14)

where
[
u(k)

]
xα1

= limx→x+
α1
u(k)(x) − limx→x−

α1
u(k)(x) for k = 0, ..., 4 denote

the function jump (k = 0) or kth derivative jump (k > 0), at the interface
point xα1 .

Another case which has been studied in [40,18,35] is when two mesh points
are positioned between the two interface points, as shown in Fig. 3b. In this
case, the 4 red mesh points (in Ω+) next to the two interface points are all
irregular points so that Theorem 1 can be used to correct eqn. (10) at them,
while the two mesh points in the middle are corner points, due to the fact that
the 5 points in the stencil of eqn. (10) scatter on two sides of both interface
points. Therefore, jump values at both interface points must be taken into
consideration simultaneously to correct eqn. (10) at these two corner points.
The following theorem provides the corrected FDs at these two corner points.

Theorem 2 (A corrected fourth order FD at two corner points shown
in Fig. 3b [40,18,35]) Let xi < xα1 < xi+1 < xi+2 < xα2 < xi+3, h−1 =
xi − xα1

, and h+2 = xi+3 − xα2
. Suppose u ∈ C6[xi−1, xα1

) ∩ C6(xα1
, xα2

) ∩
C6(xα2

, xi+4], with derivative extending continuously up to the interface points
xα1

and xα2
. Then the following approximations hold to O(h4) when K = 4:

uxx(xi+1) ≈ 1

h2

(
− 1

12
u(xi−1) +

4

3
u(xi)−

5

2
u(xi+1) +

4

3
u(xi+2)− 1

12
u(xi+3)

)
+

4

3h2

K∑
k=0

(h−1 )k

k!

[
u(k)

]
xα1

− 1

12h2

K∑
k=0

(h−1 − h)k

k!

[
u(k)

]
xα1

+
1

12h2

K∑
k=0

(h+2 )k

k!

[
u(k)

]
xα2

, (15)

uxx(xi+2) ≈ 1

h2

(
− 1

12
u(xi) +

4

3
u(xi+1)− 5

2
u(xi+2) +

4

3
u(xi+3)− 1

12
u(xi+4)

)
− 1

12h2

K∑
k=0

(h−1 )k

k!

[
u(k)

]
xα1

− 4

3h2

K∑
k=0

(h+2 )k

k!

[
u(k)

]
xα2

+
1

12h2

K∑
k=0

(h+ h+2 )k

k!

[
u(k)

]
xα2

. (16)

In this work, we continue to consider another extreme case when there
exists only one mesh point between the two interface points, as shown in Fig.
3c. The middle mesh point, xi+1, is obviously a corner point, while other mesh
points are either irregular or regular. In particular, it should be pointed out
that the two mesh points, xi and xi+2, are actually irregular points due to the
fact that, when correcting the FD applied to these two mesh points, only the
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middle mesh point, xi+1, is positioned on the Ω−-side of exactly one interface
point (either xα1 or xα2), while all other mesh points are positioned on the
Ω+-side. We thereby propose the following theorem to correct eqn. (10) at the
only corner point, xi+1, as follows in this work.

Theorem 3 (A corrected fourth order FD at the corner point shown
in Fig. 3c) Let xi < xα1

< xi+1 < xα2
< xi+2, h−1 = xi − xα1

, and
h+2 = xi+2 − xα2

. Suppose u ∈ C6[xi−2, xα1
] ∩ C6(xα1

, xα2
] ∩ C6(xα2

, xi+4],
with derivative extending continuously up to the interface points xα1 and xα2 .
Then the following approximations hold to O(h4) when K = 4:

uxx(xi+1) ≈ 1

h2

(
− 1

12
u(xi−1) +

4

3
u(xi)−

5

2
u(xi+1) +

4

3
u(xi+2)− 1

12
u(xi+3)

)
− 1

12h2

K∑
k=0

(h−1 − h)k

k!

[
u(k)

]
xα1

+
4

3h2

K∑
k=0

(h−1 )k

k!

[
u(k)

]
xα1

− 4

3h2

K∑
k=0

(h+2 )k

k!

[
u(k)

]
xα2

+
1

12h2

K∑
k=0

(h+2 + h)k

k!

[
u(k)

]
xα2

. (17)

Theorems 1-3 provide corrected FDs when either irregular or corner points
occur between two consecutive (type-2) interface points on one grid line. The
last case taken into consideration is when there are 3 mesh points between the
two interface points. It is considered the last because it is actually a mixed
case when both irregular and corner points occur between the two interface
points, as shown in Fig. 3d. In this case, all other mesh points are irregular so
that Theorem 1 can be applied to correct eqn. (10) at them, while the only
corner point is xi+2, at which the following theorem is proposed in this work
to correct eqn. (10).

Theorem 4 (A corrected fourth order FD at the corner point shown
in Fig. 3d) Let xi < xα1 < xi+1 < xi+2 < xi+3 < xα2 < xi+4, h−1 =
xi − xα1

, h+1 = xi+1 − xα1
, h−2 = xi+3 − xα2

, h+2 = xi+4 − xα2
. Suppose

u ∈ C6[xi−2, xα1
] ∩ C6(xα1

, xα2
] ∩ C6(xα2

, xi+4], with derivative extending
continuously up to the interface points xα1

and xα2
. Then the following ap-

proximations hold to O(h4) when K = 4:

uxx(xi+2) ≈ 1

h2

(
− 1

12
u(xi) +

4

3
u(xi+1)− 5

2
u(xi+2) +

4

3
u(xi+3)− 1

12
u(xi+4)

)
− 1

12h2

K∑
k=0

(h−1 )k

k!

[
u(k)

]
xα1

+
1

12h2

K∑
k=0

(h+2 )k

k!

[
u(k)

]
xα2

. (18)

3.2.3 Jump Values Reconstruction

Jump values involved in Theorem 1 - 4 usually cannot be obtained directly
from the interface condition (3) when, for example, Neumann and Robin
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boundary conditions are imposed on Γ . These jump values are treated as
auxiliary variables and will be solved together with unknown function values,
as suggested in [35]. To be more specific, we consider to construct jump values
at the left interface point xα1

in Fig. 3a. One can follow the same arguments
to construct jump values at other interface points shown in all Fig. 3a - 3d.

Noticing the two left-most mesh points in Fig. 3a are in subdomain Ω+,
fictitious values at them can be obtained by the ray-casting scheme. Utilizing
their fictitious values and true values of functions at the other three mesh
points in subdomain Ω−, one can interpolate jump values at xα1 as

[
u(k)

]
xα1

≈

(
0∑

l=−1

W k
i+lûi+l,j +

3∑
l=1

W k
i+lui+l,j

)
− 0, (19)

where zero on the right hand side of eqn. (19) is due to the fact that the func-
tion values beyond Ω− are all assumed to be zeros. In light of the two fictitious
values in eqn. (19) can be rewritten in the form of eqn. (9) individually, and
substituting eqn. (9) into eqn. (19) yields an equation,∑

(xIyJ )∈Si,j

CI,JuI,J +
[
u(k)

]
xα1

= C0φΓ , (20)

where CI,J is the corresponding weights of function value uI,J in the approx-
imation to jump quantities

[
u(k)

]
xα1

for k = 0, ..., 4, and φΓ is the known

boundary data at a type-2 interface point. As the matter of fact, one can
obtain formulas similar to eqn. (20) for all type-2 interface points in both x-
and y- directions. Moreover, CI,J ’s are all time invariant so that they are only
calculated once and then reused in every time step.

3.3 An Augmented System and Its Solution Accelerated by A Fast Sine
Transform

Eqn. (10) and its corrections introduced in Theorems 1-4 can be used to dis-
cretize the two differential operators (∆ − κI and ∆ + κI) in eqn. (7) at
various types of mesh points. The resulting fully-discretized method yields an
augmented system of equations to be solved for the unknown function values at
all interior mesh points and auxiliary variables for irregular and corner points
in every time step. Construction of the augmented system in matrix form will
be introduced first, followed by the solution to the system.

We first generalize eqn. (20) for all type-2 interface points in both the
x- and y- directions and rewrite it in an equivalent matrix form. Let N1 =
(nx − 1) × (ny − 1) be the total number of interior mesh points and N2 be
the total number of type-2 interface points in both the x- and y- directions.
In time step tn, (unknown) function values at N1 interior mesh points in the
next time step tn+1 are formed in a 1D column vector Un+1 of dimension
N1 × 1, and the corresponding auxiliary variables at all N2 type-2 interface
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points in the next time step tn+1 are formed in another 1D column vector
Qn+1 of dimension 5N2 × 1 (5 jump values at each type-2 interface point).
The matrix form of eqn. (20) at all type-2 interface points is then written as

CUn+1 + IQn+1 = Φn+1, (21)

where C is a sparse matrix of dimension 5N2 × N1 consisting of FD weights
for Un+1, I is an identity matrix of dimension 5N2 × 5N2, and Φn+1 is a
column vector of dimension 5N2 × 1 composed of terms after moving the
known quantities in time step tn+1 to the right-hand side.

The other FD equation is obtained by applying Theorem 1-4 at all interior
mesh points, depending on their types, to discretize the two (spatial) differ-
ential operators in the semi-discretized eqn. (8). The resulting equation in the
matrix form is given by

A−Un+1 +BQn+1 = −(A+Un +BQn)− Fn+ 1
2 , (22)

where matrix B is a sparse matrix of dimension N1 × 5N2 composed of co-
efficients from correction terms, and Fn+

1
2 is a column vector of dimension

N1 × 1 composed of source terms on the right-hand side of eqn. (8). The FD
matrices A− and A+ consist of coefficients from discretizing the differential
operators ∆−κ and ∆+κ using the standard fourth order central FD (10), as
if no interfaces or boundaries were involved. Note that a zero Dirichlet bound-
ary condition (6) is used on ∂D, and the solution values near ∂D can all be
assumed to be zero. Thus, along each x or y grid line, a symmetric, diagonally
dominant, and pentadiagonal matrix can be formed for the FD discretization.
For the 2D operators ∆ − κ and ∆ + κ, the corresponding matrices A− and
A+ are generated using the tensor product, so that these block-structured
matrices are symmetric and diagonally dominant.

Coupling eqn. (21) - (22) and denoting Rn = −(A+Un + BQn) − Fn+ 1
2

yields the desired augmented system,(
A− B
C I

)(
Un+1

Qn+1

)
=

(
Rn

Φn+1

)
, (23)

to be solved in time step tn. In eqn. (23), matrix B and C are both sparse and
time invariant. They are constructed in sparse forms once, and then reused
in all time steps. On the other hand, matrix A− and A+ are also sparse and
time invariant but they will not be constructed explicitly in our computation.
Taking advantage of the fact that the diffusion coefficient, β, is a constant and
the anti-symmetric property can be trivially achieved near ∂D due to zero
Dirichlet boundary condition on ∂D and zero function values in Ω+, inversion
of matrix A− and multiplication by A+ can alternatively be carried out by 2D
Fast Sine Transform (FST) very effectively. The following two algorithms are
modified from the procedures introduced in [16,19,35] to solve the augmented
system (23) as follows.

Matrix-vector multiplication of A+Un on the right-hand side of eqn. (23) is
obtained by substituting U = Un and κ = 2

β∆t in Algorithm 1. Given obtained
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A+Un, Rn can be easily calculated via one direct matrix-vector multiplication
(BQn) and two vector-vector additions.

Algorithm 1 A 2D FST for the matrix-vector product of (A+ κI)U

Input. A constant matrix A resulting from applying the fourth order central FD (10)
at (I − 1) × (J − 1) interior mesh points, a constant κ, and a known 1D vector U of
dimension (I − 1)(J − 1) × 1.

Output. The desired product is saved in a 1D vector V of dimension (I−1)(J−1)×1.

Step 1. Reshape U to an equivalent 2D array
[
ul,m

]
for l = 1, ..., I − 1 and m =

1, ..., J − 1. Compute the Sine transform of ul,m via the 2D fast Sine transform

ûp,q =
4

IJ

I−1∑
l=1

J−1∑
m=1

ul,m sin

(
plπ

I

)
sin

(
qmπ

J

)
,

for p = 1, ..., I − 1, q = 1, ..., J − 1.

Step 2. Compute

λxp = −
1

3h2x

(
cos

(
pπ

I

)
− 1

)(
cos

(
pπ

I

)
− 7

)
,

λyq = −
1

3h2y

(
cos

(
qπ

J

)
− 1

)(
cos

(
qπ

J

)
− 7

)
,

and
v̂p,q = (λxp + λyq + κ)ûp,q ,

for p = 1, ..., I − 1, q = 1, ..., J − 1.

Step 3. Compute vl,m via the 2D inverse fast Sine transform (IFST)

vl,m =

I−1∑
p=1

J−1∑
q=1

v̂p,q sin

(
plπ

I

)
sin

(
qmπ

J

)
,

for l = 1, ..., I − 1, m = 1, ..., J − 1. The resulting 2D array
[
vl,m

]
is then packed to a

1D vector V for the product of (A+ κI)U.

After Rn is obtained, a Schur complement method [16,19,35] is utilized to
eliminate Un+1 from the augmented system (23), yielding a linear system of
dimension 5N2 × 5N2 for Qn+1,(

I − C
(
A−
)−1

B
)
Qn+1 = Φn+1 − C

(
A−
)−1

Rn. (24)

to be solved for auxiliary variables in vector Qn+1 first. To this end, matrix-
vector multiplication of (A−)

−1
Rn on the right-hand side of eqn. (24) is ob-

tained by solving the equivalent linear system of equations, A−x = Rn, using
Algorithm 2 with κ = 2

β∆t and b = Rn. Then the right-hand side of eqn. (24)
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Algorithm 2 A 2D FST for solving the linear system of (A− κI)x = b

Input. A constant matrix A resulting from applying the fourth order central FD (10)
at (I − 1) × (J − 1) interior mesh points, a constant κ, and a known 1D vector b of
dimension (I − 1)(J − 1) × 1.

Output. The unknown vector x of dimension (I − 1)(J − 1) × 1.

Step 1. Reshape b to an equivalent 2D array
[
bl,m
]

for l = 1, ..., I − 1 and m =

1, ..., J − 1. Compute the Sine transform of bl,m via the 2D fast Sine transform

b̂p,q =
4

IJ

I−1∑
l=1

J−1∑
m=1

bl,m sin

(
plπ

I

)
sin

(
qmπ

J

)
,

for p = 1, ..., I − 1, q = 1, ..., J − 1.

Step 2. Compute

λxp = −
1

3h2x

(
cos

(
pπ

I

)
− 1

)(
cos

(
pπ

I

)
− 7

)
,

λyq = −
1

3h2y

(
cos

(
qπ

J

)
− 1

)(
cos

(
qπ

J

)
− 7

)
,

and

x̂p,q =
b̂p,q

λxp + λyq − κ
,

for p = 1, ..., I − 1, q = 1, ..., J − 1.

Step 3. Compute xl,m via the 2D inverse fast Sine transform (IFST)

xl,m =

I−1∑
p=1

J−1∑
q=1

x̂p,q sin

(
plπ

I

)
sin

(
qmπ

J

)
,

for l = 1, ..., I − 1, m = 1, ..., J − 1. The resulting 2D array
[
xl,m

]
is then packed to a

1D vector x for the solution of the linear system.

can be obtained by one additional matrix-vector multiplication (Cx) and one
additional vector-vector subtraction.

To further improve the efficiency of the proposed AMIB method, the fol-
lowing two options will be explored to solve eqn. (24) for Qn+1:

Option 1. (LU Decomposition approach (LU)) (A−)
−1
B on the left-hand

side of eqn. (24) can be obtained by repeatedly using Algorithm 2 for κ = 2
β∆t

and b = each column of matrix B. The coefficient matrix, I − C (A−)
−1
B,

is then constructed by one more direct matrix-vector multiplication and one
more matrix-matrix subtraction. After that, a procedure of LU decomposition
is conducted to factor the resulting coefficient matrix into two triangular ma-
trices, L and U . The two matrices, L and U , are saved and reused so that eqn.
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(24) can be easily solved by a procedure of backward and forward substitutions
in every time step.

Option 2. (Biconjugate Gradient approach (BCG)) The second option is
the same as that proposed in [35]. In this option, a BCG iteration is con-
ducted in each time step for solving Qn+1 based on known Qn and Un values.
Without generating the matrix explicitly, the matrix vector multiplication in-
volved in the left-hand side of eqn. (24) needs to be carried out in each BCG
iteration for a vector Q. In particular, the left-hand side of eqn. (24) is rewrit-

ten as IQ − C (A−)
−1
BQ, in which BQ is obtained by direct matrix-vector

multiplication, (A−)
−1

(BQ) is again carried out by using Algorithm 2 for

κ = 2
β∆t and b = BQ, and IQ − C (A−)

−1
BQ is obtained by additional

direct matrix-vector manipulation and vector-vector subtraction. The trans-

pose,
(
I − C (A−)

−1
B
)T

Q, can be completed by following the same strategy

on IQ − BT (A−)
−1
CTQ. A BCG iteration can then be conducted by using

Qn as the initial guess for Qn+1 until either a maximal iteration number (for
instance, 500) or an error tolerance (for instance, 10−13) is achieved.

Two options are considered to solve eqn. (24) because we anticipate they
are suitable to be used in different scenarios. In long-term simulations when
numerous time steps are needed to evolve from the initial time to the final
time, we expect the LU approach to be more efficient due to the fact that
the most time-consuming calculations, factoring the coefficient matrix into L
and U , only takes place once, while the procedure of backward and forward
substitutions is far more efficient when compared to the BCG approach in
each time step. On the other hand, the BCG approach is believed to be more
efficient for short-term simulations when not many time steps are required.
Numerical examples are used to verify our predictions in section 4.

After the auxiliary vector Qn+1 is solved from eqn. (24), Un+1 is then
solved from

A−Un+1 = Rn −BQn+1 (25)

by using Algorithm 2 again. At the end of time step tn, Un+1 returned by above
procedures can be contaminated by round-off errors. In order to prevent these
errors from being carried over to the next time step, a sweep of values, ui,j = 0
for all (xi, yj) ∈ Ω+ is carried out at the end of each time step.

3.4 Additional Numerical Treatments, Limitation, and Future Improvements

A couple of additional numerical treatments were also taken into consideration,
implemented and tested in this work. Even though we did not observe notable
differences in the results of tested examples after applying these treatments, we
expect they could be useful when more complicated examples are considered.
These treatments are listed in below to address possible questions from readers.
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One such treatment is how to set the initial values for the auxiliary vector
Q0 at the initial time t = 0. The most straightforward way is obviously by
using the initial condition u0(x). This assumes that the initial function is given
and one can take its derivatives to calculate derivative jumps at various type-2
interface points for Q0. In contrast, another way to obtain Q0 is to use eqn.
(21). That is, Q0 = Φ0 − CU0. In this second way, function expression and
analytical differentiation are not needed. One can calculate Q0 simply based
on discrete initial values U0. In fact, we have tested setting Q0 in both ways
for all 2D examples in section 4. Obtained results agree up to the seventh
decimal place (single precision) in all tested 2D examples.

The other additional treatment is for calculating v̂k,i and x̂k,i in Step 2
of Algorithm 1 - 2. One can see that the three values, κ = 2

β∆t and the
two λ’s, can differ by an order of several magnitudes when, for instance,
∆t � h. It is possible that significant numerical cancellation could occur in
the sum of these three values in this case. Thus, the Kahan summation algo-
rithm (https://en.wikipedia.org/wiki/Kahan summation algorithm) was im-
plemented in both algorithms to reduce possible numerical errors involved in
the summation. However, after carefully comparing the results obtained with
and without the Kahan summation algorithm, no notable differences were ac-
tually observed in all tested 2D examples.

The major limitation in the current version of the AMIB method when
solving 2D problems is the fact that the involved ray-casting scheme requires
a set of 20 mesh points to be found in Ω− to represent the fictitious value at
one mesh point. Even though one can follow the procedure suggested in [35]
to have a better chance to find sufficient mesh points in Ω−, it is still possible
that no sufficient mesh points can be found in Ω− when Γ ’s shape changes
dramatically. However, this limitation may be lifted, for example, by allowing
fictitious values to be calculated in a nested manner so that one fictitious value
can be obtained by repeatedly reusing fictitious values at other nearby mesh
points. It requires a more complicated procedure to implement the ray-casting
scheme, which is beyond the scope of this paper. Work in this direction will
be explored in the future.

3.5 Extension of the AMIB method to Three Dimensions

The AMIB method introduced in proceeding subsection 3.1 - 3.4 can be ex-
tended to solve 3D immersed parabolic problems by two major modifications.
One modification is to extend the ray-casting scheme to three dimensions,
which has been considered in the original work [35]. In three dimensions, to de-
termine one fictitious value, the ray-casting approximation is again conducted
along the normal direction. This normal line will intersect with four 2D planes
at four auxiliary points. Each auxiliary point is interpolated by 16 mesh points
on the corresponding 2D plane, so that each fictitious value is eventually rep-
resented by a linear combination of function values at 64 mesh points and
one boundary data at a type-1 interface point. The other major modification

https://en.wikipedia.org/wiki/Kahan_summation_algorithm
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is to correct Algorithm 1 - 2 to use the 3D FST. It is fairly straightforward,
because the original algorithms are formulated using the tensor product. The
two algorithms for solving 3D problems are given in Algorithm 3 - 4.

Algorithm 3 A 3D FST for the matrix-vector product of (A+ κI)U

Input. A constant matrix A resulting from applying the fourth order central FD (10)
at (I−1)× (J −1)× (K−1) interior mesh points, a constant κ, and a known 1D vector
U of dimension (I − 1)(J − 1)(K − 1) × 1.

Output. The desired product is saved in a 1D vector V of dimension (I−1)(J−1)(K−
1) × 1.

Step 1. Reshape U to an equivalent 3D array
[
ul,m,n

]
for l = 1, ..., I−1,m = 1, ..., J−1,

and n = 1, ...,K−1. Compute the Sine transform of ul,m via the 3D fast Sine transform

ûp,q,r =
8

IJK

I−1∑
l=1

J−1∑
m=1

K−1∑
n=1

ul,m,n sin

(
plπ

I

)
sin

(
qmπ

J

)
sin

(
rnπ

K

)
,

for p = 1, ..., I − 1, q = 1, ..., J − 1, and r = 1, ...,K − 1.

Step 2. Compute

λxp = −
1

3h2x

(
cos

(
pπ

I

)
− 1

)(
cos

(
pπ

I

)
− 7

)
,

λyq = −
1

3h2y

(
cos

(
qπ

J

)
− 1

)(
cos

(
qπ

J

)
− 7

)
,

λzr = −
1

3h2z

(
cos

(
rπ

K

)
− 1

)(
cos

(
rπ

K

)
− 7

)
,

and
v̂p,q,r = (λxp + λyq + λzr + κ)ûp,q,r,

for p = 1, ..., I − 1, q = 1, ..., J − 1, and r = 1, ...,K − 1.

Step 3. Compute vl,m,n via the 3D inverse fast Sine transform (IFST)

vl,m,n =

I−1∑
p=1

J−1∑
q=1

K−1∑
r=1

v̂p,q,r sin

(
plπ

I

)
sin

(
qmπ

J

)
sin

(
rnπ

K

)
for l = 1, ..., I−1, m = 1, ..., J−1, and n = 1, ...,K−1. The resulting 3D array

[
vl,m,n

]
is then packed to a 1D vector V for the product of (A+ κI)U.

3.6 Computational Complexity Analysis

This last subsection is dedicated to analyze computational complexity of the
proposed method. To this end, floating point operations (FLOPS) are used
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Algorithm 4 A 3D FST for solving the linear system of (A− κI)x = b

Input. A constant matrix A resulting from applying the fourth order central FD (10)
at (I−1)× (J −1)× (K−1) interior mesh points, a constant κ, and a known 1D vector
b of dimension (I − 1)(J − 1)(K − 1) × 1.

Output. The unknown vector x of dimension (I − 1)(J − 1)(K − 1) × 1.

Step 1. Reshape b to an equivalent 3D array
[
bl,m,n

]
for l = 1, ..., I−1, m = 1, ..., J−1,

and n = 1, ...,K−1. Compute the Sine transform of bl,m,n via the 3D fast Sine transform

b̂p,q,r =
8

IJK

I−1∑
l=1

J−1∑
m=1

K−1∑
n=1

bl,m,n sin

(
plπ

I

)
sin

(
qmπ

J

)
sin

(
rnπ

K

)
,

for p = 1, ..., I − 1, q = 1, ..., J − 1, and r = 1, ...,K − 1.

Step 2. Compute

λxp = −
1

3h2x

(
cos

(
pπ

I

)
− 1

)(
cos

(
pπ

I

)
− 7

)
,

λyq = −
1

3h2y

(
cos

(
qπ

J

)
− 1

)(
cos

(
qπ

J

)
− 7

)
,

λzr = −
1

3h2z

(
cos

(
rπ

K

)
− 1

)(
cos

(
rπ

K

)
− 7

)
,

and

x̂p,q,r =
b̂p,q,r

λxp + λyq + λzr − κ
,

for p = 1, ..., I − 1, q = 1, ..., J − 1, and r = 1, ...,K − 1.

Step 3. Compute xl,m via the 3D inverse fast Sine transform (IFST)

xl,m,n =

I−1∑
p=1

J−1∑
q=1

K−1∑
r=1

x̂p,q,r sin

(
plπ

I

)
sin

(
qmπ

J

)
sin

(
rnπ

K

)
,

for l = 1, ..., I−1, m = 1, ..., J−1, and n = 1, ...,K−1. The resulting 3D array
[
xl,m,n

]
is then packed to a 1D vector x for the solution of the linear system.

to facilitate the general discussion in this subsection. We will consider the
full details for 2D problems only. For the sake of simplicity, we assume the
number of mesh points per direction is the same and denote it by N . That is,
N = nx(= ny) in two dimensions so that N1 = O(N2). Assume the dimension
of Qn to be M = 5N2. Recall that N2 represents the total number of type-2
interface points. So, N2 is one-dimensionally smaller than N1. Therefore, we
have M = O(N). We also denote the number of involved time steps by Nt.

We first discuss the number of FLOPS for the LU approach. The compu-
tation cost comes from two parts, i.e., solving linear systems in implicit time
integration and the pre-computation of L and U . In each time step, eqn. (24) is
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solved by backward and forward substitutions with cost about O(M) = O(N)
FLOPS. On the other hand, calling either of the two algorithms, Algorithm 1 -
2, costs O(N2 logN) FLOPS. In fact, Algorithm 1 is called once and Algorithm
2 is called twice in each time step when the LU approach is used. Other direct
algebraic operations, such as matrix-vector multiplications by matrix B and
C, are negligible due to the fact that they are both sparse with much smaller
dimension than N2. Since the cost of backward and forward substitutions is
one order of magnitude smaller, it will be dropped in our analysis. In total, we
conclude the order of FLOPS in each time step is O(N2 logN). Thus, the total
implicit time integration needs O(NtN

2 logN) FLOPS when the LU approach
is used. For the pre-computation of L and U , one needs to first generate the
matrix (I−C(A−)−1B) in eqn. (24). Algorithm 2 will be called for M times to
compute (A−)−1B with a cost about O(MN2 logN) = O(N3 logN). The LU
decomposition needs O(N3) FLOPS, while costs of other minor operations are
neglected. Thus, the total pre-computation takes O(N3 logN) FLOPS. There-
fore, the overall computation of the LU approach would require a complexity
on the order of O(N3 logN) +O(NtN

2 logN). This complexity obviously de-
pends how large Nt is, relative to N . For short-term simulations with small Nt,
the first term dominates so that the CPU time will increase slightly when Nt
is increased. For a long-term simulation with a much large Nt, the second term
dominates. In this case, we expect the counts of FLOPS to increase linearly
proportional to Nt.

The BCG approach does not involve much pre-computation. In each time
step, the major cost is due to the iterative solution of (24) by the BCG ap-
proach. In each BCG iteration, Algorithm 2 will be called a couple of times.
The total calls of Algorithm 2 depend on the iteration number consumed in
the BCG algorithm. For solving the elliptic boundary value problems over ir-
regular domains, the iteration numbers of the ray-casting AMIB method have
been reported for various examples in [35]. In general, the iteration number
varies for different problems and boundary conditions. Nevertheless, the iter-
ation number is known to grow slowly with respect to the increment of N .
For this reason, the BCG iteration in each time step can be assumed to have
a complexity O(N2 logN), after ignoring FLOPS costed by minor operations.
Considering all time steps, the counts of FLOPS increase linearly proportional
to Nt because a similar number of iterations can be assumed in each time step.
Therefore, the overall computation of the BCG approach would require a com-
plexity on the order of O(NtN

2 logN).

One can follow similar discussion to analyze the complexity in three dimen-
sions. For example, the estimated counts of FLOPS for the BCG approach is
O(NtN

3 logN). However, the complexity of the LU approach is estimated to
be O(N6) + (NtN

3 logN), which could be significantly more expensive than
the BCG approach. We thus did not implement the LU approach in 3D. Nu-
merical verification of complexity for some 2D and 3D problems is given in
subsection 4.2.
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4 Numerical Experiments

In this section, a variety of 2D and 3D numerical examples are studied to
validate the proposed ray-casting AMIB method. In order to test the order of
convergence, the following two error norms

L2 =

√
1

NΩ−

∑
x∈Ω−

|u(T,x)− uh(T,x)|2

L∞ = max
x∈Ω−

|u(T,x)− uh(T,x)|

are reported at the final time T , where NΩ− is the number of mesh points
inside Γ , u is the exact solution, and uh is the numerical solution obtained
with spatial mesh size h utilized in all Cartesian directions. The order of
convergence is calculated by

order =
log(||E1||/||E2||)

log(h1/h2)

where Ei for i = 1, 2 denotes the numerical error obtained on all mesh points
after partitioning the computational domain D with uniform mesh size hi.

Numerical errors, convergence rates and stability of the proposed method
are tested on a variety of 2D and 3D examples and reported in subsection
4.1, while computational complexity is discussed using the obtained wall clock
times in these examples in subsection 4.2. All tests reported in this section
are conducted on a high performance computing cluster equipped with 24
Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz (each CPU is hyper-threaded
into 2 cores resulting in 48 processors in total), 128 GB memory, and CentOS
9 operating system. The FORTRAN 90/95 code is compiled with GCC version
4.8.5.

4.1 Numerical Errors, Convergence Rates, and Stability

Example 1. The first example is constructed by assuming the exact solution

u(t,x) = sin(7x) cos(7y) + cos(t) (26)

defined inside an interface Γ , which is governed by a parametric equation

Γ : r = 0.5 + 0.22 sin(3θ) (27)

for 0 ≤ θ ≤ 2π. The interface Γ is shaped like a 3-point star, which is plotted
together with the exact solution (26) at the initial time t = 0 in Fig. 4a. Both
the Dirichlet boundary condition employed on Γ and the initial condition of
u are obtained by the exact solution (26). The computational domain D is set
to be [− 1

3π,
1
3π] × [− 1

3π,
1
3π]. The diffusion coefficient is fixed, β = 1, in all

spatial and temporal convergence tests except those demonstrated in Table 3
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(a) Example 1. (b) Example 2.

Fig. 4: Demonstration of the exact solution and interfaces used in Example 1
- 2.

for studying the impact of β values on the convergence and stability of the
method.

The order of spatial convergence is tested first. In these tests, a small
enough time increment ∆t = 10−5 is fixed, so that ∆t � h. The final time
is also fixed, T = 10−1, so that the problem is solved in sufficiently many
(10, 000) time steps. The order of convergence with respect to h is then deter-
mined by varying the number of mesh points per direction ranging from 65 to
1025 (h ranges from 3.27E-02 to 2.05E-03). Errors in the final time step and
numerically calculated orders are listed in Table 1.

Table 1: Spatial Convergence Tests, Example 1

BCG L∞ L2

Wall Clock (s)
[Nx,Ny ] error order error order

[65, 65] 6.70872E-05 1.24562E-05 186
[129, 129] 3.89483E-06 4.10641 5.86270E-07 4.40915 789
[257, 257] 1.19083E-07 5.03241 3.73684E-08 3.97238 4, 589
[513, 513] 6.53282E-09 4.18886 2.35052E-09 3.99147 28, 021

[1025, 1025] 5.34299E-10 3.61071 1.65825E-10 3.82390 143, 816

LU L∞ L2

Wall Clock (s)
[Nx,Ny ] error order error order

[65, 65] 6.70872E-05 1.24562E-05 83
[129, 129] 3.89483E-06 4.10641 5.86270E-07 4.40915 433
[257, 257] 1.19083E-07 5.03241 3.73684E-08 3.97238 1, 581
[513, 513] 6.53271E-09 4.18888 2.35052E-09 3.99147 7, 037

[1025, 1025] 5.34350E-10 3.61055 1.65846E-10 3.82372 34, 369
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In Table 1, L∞ and L2 errors in the final time obtained by the LU approach
and the BCG approach with tolerance = 10−13 are shown in column two and
four, respectively. Their orders are shown in column three and five. One can
see that both L∞ and L2 errors are close to the fourth order, with only minor
perturbations caused by round offs and time step ∆t. Errors and orders are
shown to five decimal places. One can see that both approaches obtain almost
the same (close to double-precision) errors and orders with only very slight
differences occurring when Nx = Ny = 513 and 1025. As a matter of fact, both
approaches yield very close errors and orders in all tested cases conducted in
this paper. For simplicity, we thus will only report the errors and orders of
the BCG approach from now on. Wall clock time shown in Table 1 clearly
reveals that the LU approach is more efficient than the BCG approach in
all spatial convergence tests. It is because a sufficiently large number of time
steps, 10,000, is used in all spatial convergence tests.

The order of temporal convergence is tested next. In this series of tests,
h � ∆t is required to reduce the impact of errors introduced by spatial dis-
cretization. To this end, Nx = Ny = 1025 (h ≈ 2.05E-03) and the final time
T = 1.0 are fixed, while the number of time advance steps, Nt, varies from 2
to 128 (∆t ranges from 5.0E-01 to 7.81E-03). The BCG approach is utilized
only since the number of time steps is relatively small. Obtained results are
shown in Table 2.

Table 2: Temporal Convergence Tests, Example 1

Nt
β∆t
h2

L∞ L2

Wall Clock (s)
error order error order

2 119523 8.19E-04 4.44E-04 229
4 59762 1.69E-04 2.28 9.18E-05 2.27 349
8 29881 4.18E-05 2.01 2.27E-05 2.01 658
16 14940 1.04E-05 2.00 5.67E-06 2.00 1, 432
32 7470 2.61E-06 2.00 1.42E-06 2.00 2, 434
64 3735 6.52E-07 2.00 3.54E-07 2.00 4, 290
128 1868 1.63E-07 2.00 8.86E-08 2.00 6, 935

One can see that the second order of convergence in time is well maintained
in all tested cases. In addition, the ratio, β∆th2 , is also demonstrated in column
two to emphasize the unconditional stability of the AMIB method. This ratio is
known as the stability constraint, which must be strictly less than one for any
explicit method to converge. In our tests, it is far larger than one in all temporal
convergence tests when the AMIB method well maintains convergence at the
final time. It clearly demonstrates the unconditional stability of the AMIB
method.
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In our previous experiments, the value of β can also affect convergence and
stability of the method. To test its impact on the AMIB method, a series of
tests was conducted by fixing final time T = 1.0, time step ∆t = 10−3, and
the number of mesh points per direction Nx = Ny = 257, and varying β values
ranging from 10−2 to 103. Obtained L∞ and L2 errors in the final time are
shown in Table 3.

Table 3: Tests of the impact of β, Example 1

β L∞ L2

10−2 7.74E-06 9.84E-07
10−1 1.23E-05 2.92E-06
100 1.38E-05 3.83E-06
101 1.37E-05 3.83E-06
102 1.36E-05 3.83E-06
103 1.29E-05 3.83E-06

It is found β values do not impact the resulting errors significantly. Errors
increase slowly and plateau quickly as β increases. The largest errors are just
about 1.8 and 3.9 times of the smallest ones while β changes from 10−2 to 105

(7 orders of magnitude). Given the results shown in Table 3, we believe that
the performance of the AMIB method is not impacted by β values significantly.

At the end of this example, the numerical solution and corresponding abso-
lute errors at a final time T = 2π(≈ 6.284) are shown in Fig. 5 for visualizing
the dissipation of the solution and error in subdomain Ω−. In this demo,
∆t = 10−3 and Nx = Ny = 129 are used.

(a) Solution (b) Error

Fig. 5: Demonstration of numerical solution and absolute errors at a final time
T = 6.284 in Example 1.
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Example 2. The second example reuses the same exact solution (26) but
reconstructs the interface by

Γ : r = 0.5 + 0.13 sin(5θ), (28)

resulting in a 5-point star interface Γ as shown in Fig. 4b. A more generic
Robin boundary condition (3) with αΓ = βΓ = 1.0 is imposed on Γ , where
φ(t,x) is determined by the exact solution (26) again. Given the changed
interface shape and boundary condition, we would like to see whether the
orders of convergence are still maintained in this example.

Spatial convergence is tested first again. The same numerical setup used
in Example 1 is reused here and the obtained errors and associated spatial
convergence order are reported in Table 4. One can see that both L∞ and
L2 errors are about 1-2 magnitudes larger than those obtained in Example
1. All numerically calculated orders are still reasonably close to the desired
order four with only one exception that the order of L∞ error is 2.97 when
Nx = Ny = 129. This suggests that the boundary condition imposed on Γ and
the shape of Γ indeed have some impacts on the accuracy, and this motivates us
to test additional generic boundary conditions and interfaces in the following
examples. On the other hand, no significant differences are observed when
comparing wall clock time shown in Table 1 and 4 so that it is strongly believed
that this method is equally efficient when solving these two examples.

Table 4: Spatial Convergence Tests, Example 2

[Nx,Ny ]
L∞ L2 Wall Clock (s)

error order error order BCG LU

[65, 65] 1.56E-03 5.76E-04 161 66
[129, 129] 1.99E-04 2.97 5.45E-05 3.40 852 385
[257, 257] 8.26E-06 4.59 2.40E-06 4.51 4, 244 2, 063
[513, 513] 3.66E-07 4.50 1.22E-07 4.30 22, 036 8, 063

[1025, 1025] 4.00E-08 3.19 1.04E-08 3.56 102, 728 36, 506

Temporal convergence tests are conducted in a similar manner and the
results are presented in Table 5. The utilized time steps are shown in the
second column. They are identical to those used in temporal convergence tests
in Example 1. Values of β∆t

h2 are identical to those shown in Table 2 so that
they are removed from Table 5. Noticing all errors are comparable to those
shown in Table 2 and all calculated orders of convergence in time are close
to two, we conclude that the AMIB method well maintains its unconditional
stability and the order of convergence in time on this example as well.

Lastly, numerical solutions and corresponding absolute errors at various
time steps obtained by using ∆t = 10−3 and Nx = Ny = 129 are shown in
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Table 5: Temporal Convergence Tests, Example 2

Nt ∆t
L∞ L2

Wall Clock (s)
error order error order

2 5.00E-01 4.06E-04 2.00E-04 68
4 2.50E-01 9.86E-05 2.04 4.85E-05 2.05 129
8 1.25E-01 2.45E-05 2.01 1.20E-05 2.01 253
16 6.25E-02 6.14E-06 2.00 3.00E-06 2.00 506
32 3.13E-02 1.56E-06 1.98 7.47E-07 2.01 966
64 1.56E-02 4.13E-07 1.92 1.84E-07 2.02 1, 768
128 7.81E-03 1.27E-07 1.70 4.69E-08 1.97 3, 094

(a) Solution at t = 1.256 (b) Solution at t = 3.140 (c) Solution at t = 5.652

(d) Error at t = 1.256 (e) Error at t = 3.140 (f) Error at t = 5.652

(g) Solution at t = 6.284 (h) Error at t = 6.284

Fig. 6: Demonstration of the numerical solution and errors in Example 2.

Fig. 6a - 6f, and those obtained at the final time T = 2π are shown in Fig.
6g - 6h. Different plots are used so that one can see how solution and error
change over time.
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Example 3. We continue to test the performance of the AMIB method on
another example with a new exact solution, a differently-shaped Γ , and more
generic boundary conditions. In this example, the exact solution is defined by

u(t,x) = sin(7x) cos(7y) cos(t), (29)

and Γ = Γ1 ∪ Γ2 is constructed by the union of two circles

Γ1 = {(x, y)|x < 0, (x+ 0.2)2 + y2 = 0.52},
Γ2 = {(x, y)|x > 0, (x− 0.2)2 + y2 = 0.52}. (30)

A more complicated mixed (Robin and Neumann) boundary condition is im-
posed on Γ by

u+
∂u

∂n
= (sin(7x) cos(7y) + 7 cos(7x) sin(7y)n̂x − 7 sin(7x) cos(7y)n̂y) cos(t),

on Γ1

∂u

∂n
= (7 cos(7x) cos(7y)n̂x − 7 sin(7x) sin(7y)n̂x) cos(t), on Γ2 (31)

where (n̂x, n̂y) determines the normal direction. Besides the change of the
shape of Γ , another significance of this example is that the boundary condition
(31) is time-and-space dependent.

Table 6: Spatial Convergence Tests, Example 3

[Nx,Ny ]
L∞ L2 Wall Clock (s)

error order error order BCG LU

[65, 65] 2.62E-03 9.19E-04 161 66
[129, 129] 1.37E-04 4.26 5.45E-05 4.08 903 356
[257, 257] 1.80E-05 2.92 5.97E-06 3.19 4, 272 1, 799
[513, 513] 8.57E-07 4.39 2.98E-07 4.33 21, 998 6, 737

[1025, 1025] 4.68E-08 4.19 1.79E-08 4.06 101, 497 31, 961

We continue using the same numerical setup to test the orders of accuracy
in space and time. The resulting errors and orders of convergence are shown in
Table 6 and 7, respectively. Once again, one can see that the proposed method
is still capable of achieving the fourth order of convergence in space and the
second order of convergence in time, despite the fact that the shape of Γ and
the boundary condition are quite different from those used in Example 1-2.
All tested cases in this example return normally. No divergence was observed.
This strongly suggests that the proposed method is indeed unconditionally
stable, reliably producing close approximations to the exact solution of the



32 Chuan Li et al.

Table 7: Temporal Convergence Tests, Example 3

Nt

L∞ L2

Wall Clock (s)
error order error order

2 6.88E-04 3.07E-04 64
4 1.69E-04 2.02 7.57E-05 2.02 131
8 4.22E-05 2.01 1.89E-05 2.00 247
16 1.05E-05 2.01 4.69E-06 2.01 474
32 2.58E-06 2.03 1.15E-06 2.03 920
64 5.98E-07 2.11 2.63E-07 2.13 1, 695
128 1.03E-07 2.53 4.32E-08 2.61 3, 043

(a) Solution at t = 1.256 (b) Solution at t = 3.140 (c) Solution at t = 5.652

(d) Error at t = 1.256 (e) Error at t = 3.140 (f) Error at t = 5.652

(g) Solution at t = 6.284 (h) Error at t = 6.284

Fig. 7: Demonstration of the numerical solution and errors in Example 3.

tested problem. Similar plots as those shown in Example 2 for visualizing the
solutions and errors at various time steps are given in Fig. 7.



Fast and high order method for parabolic problems 33

Example 4. One more 2D example is given before our tests in two dimensions
are concluded. In this example, exact solution (29) is reused, while an arch-like
interface Γ is constructed by two half-circles and two rectangles

circle 1 : Γ1 = {(x, y)|x < 0, y =
√

0.32 − x2},

circle 2 : Γ2 = {(x, y)|x > 0, y =
√

0.82 − x2}, (32)

rectangles : [−0.8,−0.3]× [−0.8, 0] and [0.3, 0.8]× [−0.8, 0].

One can refer to Fig 8f - 8g for the shape of Γ used in this example. A mixed
boundary condition is again imposed on Γ as

u+
∂u

∂n
= (sin(7x) cos(7y) + 7 cos(7x) sin(7y)n̂x − 7 sin(7x) cos(7y)n̂y) cos(t),

on Γ ∩ {(x, y)|x > 0},
∂u

∂n
= (7 cos(7x) cos(7y)n̂x − 7 sin(7x) sin(7y)n̂x) cos(t), on Γ2

on Γ ∩ {(x, y)|x < 0}. (33)

Table 8: Spatial Convergence Tests, Example 4

[Nx,Ny ]
L∞ L2 Wall Clock (s)

error order error order BCG LU

[65, 65] 1.61E-03 5.00E-04 217 159
[129, 129] 7.53E-05 4.41 2.81E-05 4.16 1, 031 1, 284
[257, 257] 4.24E-06 4.15 1.60E-06 4.14 4, 359 3, 338
[513, 513] 3.53E-07 3.59 9.77E-08 4.03 23, 029 19, 041

[1025, 1025] 3.14E-08 3.49 6.90E-09 3.82 101, 030 69, 224

Spatial convergence tests, temporal convergence tests, and visualization of
solutions and errors are shown in Table 8, Table 9, and Fig. 8, respectively.
The proposed method, as expected, robustly maintains desired convergence
orders on this example again. Given our experience on these four examples
in two dimensions, we are confident to claim that the first three goals we set
in section 1 are attained by the developed AMIB method in two dimensions.
We then move forward to test its performance to solve a problem in three
dimensions.

Example 5. In this 3D example, the exact solution defined by

u(t, x, y, z) = sin(2x) cos(2y) sin(2z) cos(2t)
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Table 9: Temporal Convergence Tests, Example 4

Nt

L∞ L2

Wall Clock (s)
error order error order

2 4.06E-04 2.00E-04 78
4 9.86E-05 2.04 4.85E-05 2.05 141
8 2.45E-05 2.01 1.20E-05 2.01 262
16 6.14E-06 2.00 3.00E-06 2.00 528
32 1.56E-06 1.98 7.47E-07 2.01 955
64 4.13E-07 1.92 1.84E-07 2.02 1, 739
128 1.27E-07 1.70 4.69E-08 1.97 3, 073

(a) Solution at t = 1.256 (b) Solution at t = 3.140 (c) Solution at t = 5.652

(d) Error at t = 1.256 (e) Error at t = 3.140 (f) Error at t = 5.652

(g) Solution at t = 6.284 (h) Error at t = 6.284

Fig. 8: Demonstration of the numerical solution and errors in Example 4.

inside a 3D spherical domain with boundary Γ governed by

Γ : x2 + y2 + z2 = 0.62.
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A Robin boundary condition with αΓ = βΓ = 1.0 is employed, and the com-
putational domain D is set to be

[
− 2

3π,
2
3π
]
×
[
− 2

3π,
2
3π
]
×
[
− 2

3π,
2
3π
]
.

Table 10: Spatial Convergence Tests, Example 5

[Nx,Ny ,Nz ]
L∞ L2

Wall Clock (s)
error order error order

[33, 33, 33] 1.19E-03 7.61E-05 121
[65, 65, 65] 1.21E-04 3.29 5.20E-06 3.87 1, 341

[129, 129, 129] 8.12E-06 3.90 3.58E-07 3.86 12, 058
[257, 257, 257] 4.00E-07 4.34 1.86E-08 4.27 107, 094

Spatial convergence tests are conducted by choosing a small time step
∆t = 10−5. The BCG approach is used since there are only 1,000 time steps
evolved from initial time t = 0 to final time T = 10−2. Obtained errors and
the corresponding orders are presented in Table 10, in which fourth order of
convergence in space is clearly observed. In addition, the final solution and
error on the surface of the sphere for the case of Nx = Ny = Nz = 129 are
plotted in Fig. 9a - 9b. Both subfigures are rotated so that the most significant
changes on the surface face front for easy observation.

(a) Solution (b) Error

Fig. 9: Demonstration of the numerical solution and errors on the surface of a
sphere in Example 5.

Temporal convergence tests are conducted by fixing Nx = Ny = Nz = 257
and the final time T = 1.0 and then varying the number of times steps from
Nt = 2 to 128. The obtained errors at the final time and associated order of
convergence in time are presented in Table 11. Order 2 can be clearly observed
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in Table 11. In fact, some observed orders are greater than 2 and even reach an
order of 3 in the case of Nt = 128. Nevertheless, second order of convergence
in time is confirmed in three dimensions by this example.

Table 11: Temporal Convergence Tests, Example 5

Nt
β∆t
h2

L∞ L2

Wall Clock (s)
error order error order

2 1, 868 2.08E-03 5.05E-04 1, 287
4 934 4.67E-04 2.16 8.75E-05 2.53 2, 232
8 467 1.13E-04 2.04 1.58E-05 2.47 4, 227
16 233 2.81E-05 2.01 2.85E-06 2.47 7, 007
32 117 6.92E-06 2.02 5.06E-07 2.50 13, 548
64 58 1.63E-06 2.08 8.58E-08 2.56 24, 860
128 29 2.04E-07 3.00 7.29E-09 3.56 40, 521

4.2 Numerical Verification of Computational Complexity

In subsection 3.6, the complexity of the LU and BCG approaches in 2D is esti-
mated to be O(N3 logN) +O(NtN

2 logN) and O(NtN
2 logN), respectively,

where N is the number of mesh points per direction and Nt is the number
of time steps. In this subsection, the computational complexity will be quan-
titatively verified using Example 1 - 5. To this end, the CPU time will be
measured by the wall clock time for all computations, and is plotted against
N or Nt in log-log scales. Moreover, least squares fitting will be conducted in
all plots so that the slopes of obtained straight lines are used to demonstrate
the orders of FLOPS for computational complexity.

Plots of wall clock times versus N for all five numerical examples are shown
in Fig. 10, in which Nt is fixed to be a large number in all cases for each figure.
In Fig. 10a - 10d, results of both BCG and LU approaches for solving the four
2D examples are demonstrated. It can be seen that the complexity of both
approaches is approximately a linear function in the log-log scale. For the LU
approach, since Nt is much larger than N , its complexity essentially behaves
as O(NtN

2 logN) or O(N2 logN) when Nt is a constant. The effect of logN
is hard to capture in the log-log scale. Thus, we will consider a simple power
form O(Nr) and determine the numerical ratio r via the least squares fitting.
The fitted ratios are reported in the legends, which range from 2.15 to 2.27
for the LU approach. This demonstrates the O(N2 logN) complexity for the
LU approach. For the BCG approach with a fixed Nt, the complexity should
also take the form O(N2 logN). The numerical ratio r of the BCG approach is
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(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

(e) Example 5

Fig. 10: Orders of FLOPS with respect to number of mesh points per direction
for Example 1-5.

found to be in between 2.23 to 2.44, which is slightly larger than that of the LU
approach. This is because in the AMIB method [20,35], the number of BCG
iterations will increase slightly as N becomes larger, while the LU approach
has a fixed number of steps for different N in the time integration. The present
study shows that the difference in r for LU and BCG approaches is about 0.1
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or 0.15. Thus, fairly speaking, the complexity of the BCG approach can still
be regarded as O(N2 logN).

In three dimensions, wall clock times obtained by the BCG approach for
solving Example 5 are shown in Fig. 10e. Using the least squares, the com-
plexity of the BCG approach is estimated to be O(N3.30). This is very close
to the expected FLOPS on the order of O(N3 logN), or O(NtN

3 logN) if Nt
is not fixed.

(a) Nx = Ny = 65 (b) Nx = Ny = 257

Fig. 11: Orders of FLOPS with respect to Nt for Example 1 with different
mesh sizes.

Next, wall clock times versus the number of time steps, Nt, for Example 1
are plotted in Fig. 11. For a better comparison, results obtained for two spatial
discretizations, N = Nx = Ny = 65 and N = Nx = Ny = 257, are shown side
by side in Fig. 11a - 11b. For both spatial discretizations, time step is fixed,
∆t = 10−3, while the final time varies so that the total number of time steps
varies from 100 (small) to 10,000 (large).

For the BCG approach, it is clear that the complexity is still a linear func-
tion with respect to Nt in both cases. Least squares fittings are also conducted
to estimate the numerical ratio for Nt, i.e., O(Nr

t ). Both obtained ratios (0.96
and 1.15) are very close to one. This validates the FLOPS on the order ofO(Nt)
for the BCG approach for the present study. Combining with the previous test,
one can conclude that the complexity of the BCG approach is O(NtN

2 logN)
and O(NtN

3 logN), respectively, in two and three dimensions.

For the LU approach, it can be seen from Fig. 11 that the wall clock time
does not increase much at the beginning, while it increases in a rate close to
linear when Nt gets larger. This agrees with our estimation of the complexity
in two dimensions, i.e., O(N3 logN) + O(NtN

2 logN). Note that the first
term does not depend on Nt, and is larger than the second term when Nt is
small. Thus, the wall clock time increases slowly at the beginning. When Nt is
large enough, the second term dominates so that the wall clock time increases
linearly with respect to Nt. To verify this, least squares fittings using wall
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clock times obtained at the three largest numbers of time steps for the LU
approach are drawn in both subfigures. One can see the obtained orders of
FLOPS are both close to one, suggesting wall clock time indeed increases in
a linear manner with respect to Nt for the LU approach when Nt is large
enough.

One can also see how well the two approaches perform when N varies by
comparing where the two broken lines meet in Fig. 11a - 11b. In Fig. 11a
(N = 65 (small)), the BCG approach outperforms the LU approach (less wall
clock time) when Nt < 250, but the LU approach catches up quickly and
starts to outperform the BCG approach when Nt ≥ 250. On the other hand,
in Fig. 11b (N = 257 (large)), the BCG approach is more efficient than the LU
approach when Nt < 750, while the LU approach becomes more efficient that
the BCG approach when Nt ≥ 750. Note that the critical Nt value becomes
larger when N is bigger. In general, our conclusion is that the BCG approach is
more suitable for short-term simulations and the LU approach is more suitable
for long-term simulations in two dimensions.

5 Conclusion

A novel FD method is proposed in this work to solve parabolic equations in
irregularly shaped domains in two and three dimensions. Results obtained in
numerical experiments suggest that the proposed ray-casting AMIB method
enjoys merits such as high-order convergence (second order in time and fourth
order in space), unconditional stability, accelerated calculations via multi-
dimensional Fast Sine Transforms, and capability of dealing with a variety
of boundary conditions and complicated geometries. The ray-casting AMIB
method was first developed in [35] for solving elliptic boundary value prob-
lems over irregular domains. Besides extending to parabolic problems, the
present study further improves the robustness of the ray-casting AMIB method
by studying all potential cases of irregular and corner points in the correc-
tion to the fourth order central difference approximation. Consequently, the
present AMIB method can accommodate more complicated geometry, while
maintaining a fourth order of accuracy in space. When compared to other
high-order methods for parabolic problems, the unique feature of the pro-
posed AMIB method is its high efficiency on the order of O(NtN

2 logN) and
O(NtN

3 logN), respectively, in two and three dimensions. By using the LU
approach, the efficiency can be further improved in two dimensions for long
time simulations. The generalization of the ray-casting AMIB method for solv-
ing parabolic interface problems with material interfaces and jump conditions
is under our investigation.
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