Cardiac Action Potential – the Luo-Rudy Model

Scott Moon Corey Zhang Chhatra Sule Dr. Chuan Li

Biological background

What is an action potential?

- Electrical pulses to signal and trigger contraction
- Triggered by stimulus (pacemaker cells)
- Voltage drop across membrane via controlling ions
- Cell level vs fiber level

Ions at the cell membrane

The model for a single cell

The model as a circuit

The Luo-Rudy Model

$$egin{aligned} I_{stim} &= C_m rac{dV}{dt} + I_{ion} \ I_{ion} &= I_{Na} + (I_K + I_{K1} + I_{Kp}) + I_{si} + I_b \end{aligned}$$

$$egin{aligned} &I_{Na}=G_{Na}\cdot m^3\cdot h\cdot j\cdot (V-E_{Na})\ &I_{si}=G_{si}\cdot d\cdot f\cdot (V-E_{si})\ &I_K=G_K\cdot X\cdot X_i\cdot (V-E_K)\ &I_{K1}=G_{K1}\cdot K1_\infty\cdot (V-E_{K1})\ &I_{Kp}=G_{Kp}\cdot Kp\cdot (V-E_{Kp})\ &I_b=G_b\cdot (V-E_b) \end{aligned}$$

$$rac{dy}{dt} = lpha_y(V)(1-y) - eta_y(V)y$$

where *y* is gating variables *m*, *h*, *j*, *d*, *f*, *X*

$$E_{si} = 7.7 - 13.0287 \ln{([Ca]_i)}
onumber \ rac{d[Ca]_i}{dt} = -10^{-4} \cdot I_{si} + 0.07(10^{-4} - [Ca]_i)$$

Note: $E_{K'}$, E_{K1} , and E_{Kp} all depend on $[K]_{o}$

Numerical results and analysis

Forward difference

$$V_{i+1} = V_i + \Delta t \left(rac{1}{C_m}
ight) \left(I_{stim} - I_{ion}
ight)$$

$$y_{i+1} = y_i + \Delta t \left(lpha_y(V)(1-y_i) - eta_y(V)y_i
ight)$$

where y is gating variables *m*, *h*, *j*, *d*, *f*, X

$$Cai_{i+1} = Cai_i + \Delta t (-10^{-4} \cdot I_{si} + 0.7(10^{-4} - Cai))$$

Results – Voltage (at varying [K]_o levels)

The model for a chain of cells

Cable equation

- Stimulus can be from neighboring cells
- Consider the cells in thin fiber, signal propagating via diffusion
- Each point in space has its own variables associated, only V is spatially dependent

Central difference

Luo-Rudy PDE

Effects of higher resistance

Conclusion