Improved Augmented Matched Interface and Boundary (AMIB) Method for Solving Problems on Irregular 2D Domains

Benjamin Pentecost
bp957721@wcupa.edu

April 17, 2024
Department of Mathematics West Chester University of Pennsylvania

Mathematical Models

- Poisson Eqn. (time-indept.):

$$
\begin{equation*}
\Delta u+k u=f(\vec{x}), \tag{1.1}
\end{equation*}
$$

- Boundary Condition:

$$
\begin{equation*}
\alpha_{\Gamma} u+\beta_{\Gamma} \frac{\partial u}{\partial n}=\phi(\vec{x}), \tag{1.2}
\end{equation*}
$$

- Heat Eqn. (time-dept.):

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\beta \Delta u+g, \quad 0 \leq t \leq T \tag{1.3}
\end{equation*}
$$

- Boundary Condition:

$$
\begin{equation*}
\alpha_{\Gamma} u+\beta_{\Gamma} \frac{\partial u}{\partial n}=\psi(t, \vec{x}), \text { on } \Gamma, \tag{1.4}
\end{equation*}
$$

- Initial Condition:

$$
\begin{equation*}
u(0, \vec{x})=u_{0}(\vec{x}), \tag{1.5}
\end{equation*}
$$

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania

Applications

Figure: Poisson-Boltzmann eqn. for electrostatic potential distribution over a protein.

Figure: Pennes Bioheat eqn. for heat dissipation in Magnetic Fluid Hyperthermia (MFH).

Interface Points, Fictitious Points, and Vertical Points

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania

Fictitious Value Representations at Fictitious Points

$$
\begin{equation*}
\tilde{u}_{\mathrm{FP}}=\sum_{\left(x_{I}, y_{J}\right) \in S_{\mathrm{FP}}} \check{w}_{\mathrm{I}, \mathrm{~J}} u_{\mathrm{I}, \mathrm{~J}}+\sum_{\vec{x}_{\mathrm{VP}_{\mathrm{i}}} \in V_{\mathrm{FP}}} \breve{w}_{\mathrm{VP}_{\mathrm{i}}} \phi\left(\vec{x}_{\mathrm{VP}}^{\mathrm{i}} \text { }\right) \tag{2.1}
\end{equation*}
$$

where S_{FP} is a set of chosen grid points and V_{FP} is a set of vertical points.

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania

The Augmented System

$$
\left(\begin{array}{cc}
A & B \tag{2.2}\\
C & I
\end{array}\right)\binom{U}{Q}=\binom{F}{\Phi},
$$

Let $N_{1}=$ number of interior grid points, $N_{2}=$ number of interface points, we have:

- $A_{N_{1} \times N_{1}}$
- $B_{5 N_{2} \times N_{1}}$
- $C_{N_{1} \times 5 N_{2}}$
- $I_{5 N_{2} \times 5 N_{2}}$
- $U_{N_{1} \times 1}$
- $Q_{5 N_{2} \times 1}$

Figure: Nonzero entries of B and C.

The "starfish" Interface (Poisson Eqn.)

Figure: Numerical solution of the "starfish" interface.

[N_{x},N_{y}]{}	L^{∞}			L^{2}		
	error	order		error	order	
iter no.						

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania

The "butterfly" Interface (Heat Eqn.)

Figure: Numerical solution of the "butterfly" interface.

[$\left.N_{x}, N_{y}\right]$	L^{∞}		L^{2}		$\begin{gathered} \mathrm{BCG} \\ \text { time }(\mathrm{sec}) \\ \hline \end{gathered}$
	error	order	error	order	
[65, 65]	$1.15 \mathrm{E}-04$		$1.09 \mathrm{E}-05$		28
[129, 129]	$5.39 \mathrm{E}-07$	7.74	$1.24 \mathrm{E}-07$	6.46	69
[257, 257]	$5.50 \mathrm{E}-09$	6.62	$1.38 \mathrm{E}-09$	6.48	293
[513, 513]	$3.09 \mathrm{E}-10$	4.15	$1.02 \mathrm{E}-10$	3.76	1351

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania

Table: Temporal convergence tests for solving the ImIBVP with the "butterfly"-shaped interface

N_{t}	L^{∞}		L^{2}		$\begin{gathered} \text { BCG } \\ \text { time }(\mathrm{sec}) \\ \hline \end{gathered}$
	error	order	error	order	
2	$1.67 \mathrm{E}-03$		$9.24 \mathrm{E}-04$		82
4	$4.01 \mathrm{E}-04$	2.05	$2.23 \mathrm{E}-04$	2.05	160
8	$9.99 \mathrm{E}-05$	2.01	$5.54 \mathrm{E}-05$	2.01	308
16	$2.49 \mathrm{E}-05$	2.00	$1.38 \mathrm{E}-05$	2.00	568
32	$6.23 \mathrm{E}-06$	2.00	$3.46 \mathrm{E}-06$	2.00	1104
64	$1.56 \mathrm{E}-06$	2.00	$8.65 \mathrm{E}-07$	2.00	2038
128	$3.89 \mathrm{E}-07$	2.00	$2.16 \mathrm{E}-07$	2.00	3802

The "aircraft" Interface (Heat Eqn.)

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania

Table: Convergence tests for solving the ImIBVP with the "aircraft"-shaped interface of various scale factors

$\begin{gathered} \text { scale factor } \\ k \\ \hline \end{gathered}$	no. of points		L^{∞}	L^{2}	$\begin{gathered} \mathrm{BCG} \\ \text { time }(\mathrm{sec}) \end{gathered}$
	IP	FP			
1.0	662	909	5.24E-09	3.78E-10	121
1.3	856	1198	$3.41 \mathrm{E}-09$	$2.48 \mathrm{E}-10$	122
1.6	1060	1479	$4.32 \mathrm{E}-09$	$3.16 \mathrm{E}-10$	141
1.9	1266	1765	$3.43 \mathrm{E}-09$	$2.20 \mathrm{E}-10$	131

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania

Conclusion

Key characteristics of the developed AMIB method are:

- capable of solving problems over highly irregular domains
- capable of handling versatile boundary conditions
- unconditionally stable when solving time-dependent problems
- accelerated by the FFT for high efficiency
- fourth-order accuracy (in space)

References

Li, C., Zhao, S., Pentecost, B., Ren, Y., \& Guan, Z. (2024). A fourth-order Cartesian grid method with FFT acceleration for elliptic and parabolic problems on irregular domains and arbitrarily curved boundaries. To be submitted.
Li, C., Ren, Y., Long, G., Boerman, E., \& Zhao, S. (2023). A Fast Sine Transform Accelerated High-Order Finite Difference Method for Parabolic Problems over Irregular Domains. Journal of Scientific Computing, 95(2), 49-. https://doi.org/10.1007/s10915-023-02177-7
Ren, Y., Feng, H., \& Zhao, S. (2022). A FFT accelerated high order finite difference method for elliptic boundary value problems over irregular domains. Journal of Computational Physics, 448, 110762-. https://doi.org/10.1016/j.jcp.2021.110762

