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The Notion of Topological Space
What is Topology?

▶ Topology is concerned with properties of geometric objects
that are preserved under continuous deformations (stretching,
twisting, crumpling, etc.)

▶ Much of Topology deals with generalizing properties and
subets of the real number line which we denote by R.

▶ Topology is also concenred with studying topological spaces
in their own right and there properties: Compactness,
Connectedness/Path Connectedness, etc.
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The Notion of Topological Space

The simplest example of a topological space is the real number line
we are familar with from elementary algebra and calculus.
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Figure: The Earring Space E

Some spaces can be more “wild”. The prototypical example of such
a space is the “Earring Space” which can be realized as a union of
an infinte wedge of shrinking circles that share a common point.



Figure: The 2D-Earring or the Barratt-Milnor Sphere (Point Wildness)



Figure: The Serpenski Gasket (Global Wildness)



Algebraic Topology

What is Algebraic Topology?: Algebraic Topology uses tools
from abstract algebra to study topological spaces. More formally,
the basic objective is to find algebraic invarients that calssify
topological spaces up to homeomorphism (but mostly up to
homotopy)



Figure: Homotopy groups of spheres

The most important of these algebraic invarients is what is known
as the Homotopy Groups which are denoted by πn(X , x0). Here
X is a topological space and x0 is a particular point of that space.
Roughly speaking, the homotopy groups capture or detect data
about the shape and number of “holes” in a given space.



Simplicial Complexes

A Simplex is a genrealization of a triangle to higher dimensions.
We can define the Standard n-simplex to be the subset of Rn+1

defined by:

∆n = {(s1, . . . , sn) ∈ Rn+1 |
n∑

i=0

si = 1, si ≥ 0}



Simplicial Complexes

We consider a Simplicial Complex A to be a set of simplicies
that statisy the following stipulations:

1. Every face of a simplex of A is also in A
2. The intersection of two simplices σ, σ′ ∈ A is a face of both σ

and σ′.



The Nerve of an Open Cover

Figure: A cover of the space S1

What’s of prime importance here is that under the stipulation that
X is compact, we can cover the space by a finite number of open
sets; this allows us to conceptualize the nerve of an open cover;
denoted by N(U) where U is an open cover. Let us consider a
general example



The Nerve of an Open Cover

Figure: An open cover of a space X



The Nerve of an Open Cover

Figure: The 0-Skeleton

A vertex is placed for each U of the cover U .



The Nerve of an Open Cover

Figure: The 1-Skeleton

When U1 ∩ U2 ̸= ∅ we will place an edge (or rather, a 1-simplex)
between their vertices (or each neighborhood).



The Nerve of an Open Cover

To form the 2-Skeleton we consider U1 ∩ U2 ∩ U3 ̸= ∅ and so there
will be three edges joining each pair of the vertices U1,U2,U3. We
place a triangle (or 2-simplex) so that the edges of the triangle will

match up with these three edges.

In general, we can continue forming the n-skeleton for
U1, . . . ,Un+1 where

⋂n+1
i=1 Ui ̸= ∅ attaching an n-simplex to fill in

the boundary. This is the nerve N(U).



The Nerve of an Open Cover

We often want to consider maps PU : X → N(U) (from a
topological space X to the nerve of its cover U). In these
mappings we often lose certain “geometric” information about the
space in consideration. Sometimes the nerve is not “good enough”
and we need to form a refinement of such a cover. In this process
of refinements we form what is called the n-th Shape
Homomorphism written:

Ψn
X : πn(X , x0)→ π̌n(X , x0)

Here
π̌n(X , x0) = lim←−(πn(|N(U)|,U0), pUV#,Λ)

is the n-th Shape Group (or nth-Čech homotopy group).



Of particular importance is the shape morphism is the Shape
Kernel ker Ψn

X . The shape kernel gives us a measurement of “data
retainment” when passing from the n-th homotopy group to the
n-th shape group. Where are particularly interested in when the
shape kernel is trivial (i.e ker Ψn

X = 0) for this tells us that X is
πn-shape injective. Further from this, one can realize elements of
the n-th homotpy group as sequences of inverse limits of
fundamental groups of polyhedra.



Detecing Information Loss In Shape Theory

Figure: Karol Borsuk - Creator of Modern Shape Theroy

The Nerve of an open cover is a concept often used in a field of
math known as Shape Theory. In short, the goal of Shape Theory
is to approximate topological spaces by nerves of open covers.In
particular, we can apply the notion of the nerve of an open cover
to analyze data.



Detecing Information Loss In Shape Theory

Topological Data Analysis uses the notion of nerves of open
covers for analyzing discrete data sets. Previous results by Dr.
Brazas and Dr. Fabel have been applied here to find the “shape”
of data utilzing the methods outlined here..



n-Spanier Groups and n-Thick Spanier Groups

Figure: Dr.Edwin Spanier

The crux of our research deals with the notion of what is called a
Spanier group. The Spanier group is a subgroup (subset that is
also a group in its own right) of π1(X , x0) which we denote by
πSp(U , x0) which is generated by elements [p][γ][p−] where [p] is a
path class and γ : [0, 1]→ X is a loop which is based at p(1) for
some U ∈ U .



n-Spanier Groups and n-Thick Spanier Groups

Figure: A generator of πSp
2 (X , x0)

It’s possible to extend the notion of the Spanier group to higher
Spanier groups;for these we write πSp

n (X , x0) and they are
subgroups of πn(X , x0); the n-th homotopy groups. We can define
the n-Spanier group (with respect to an open cover U)
mathematically as:

πSp
n (U , x0) = ⟨[p ∗ γ] | p ∈ P(X , x0), Im(γ) ⊆ U,U ∈ U⟩



n-Spanier Groups and n-Thick Spanier Groups

Figure: A generator of the Thick Spanier Group Π1(U , x0)

There is also a notion of the Thick Spanier Group; this was
developed in a paper by Dr. Jeremey Brazas, and Dr. Paul Fabel.
In this paper, the first Thick Spanier group is defined as:

ΠSp
1 (U , x0) = ⟨p·γ·p−1 | p ∈ P(X , x0), γ ∈ Ω(U1∪U2, p(1)),U1,U2 ∈ U⟩



n-Spanier Groups, n-Thick Spanier Groups and the Shape
Kernel

Figure: A generic element of the 2-thick Spanier group

In our work, we have sought to extend the definition of the Thick
Spanier group to higher dimensions; in other words we have aimed
to define ΠSp

n (X , x0). We have determined the higher thick Spanier
groups can be defined as follows

Πn(U , x0) = ⟨[p∗γ] | p ∈ P(X , x0), γ ∈ Ωn(X , p(1)); I ̸= ∅, Im(γ) ⊆ N⟩
where I =

⋂m
i=1 Ui ,N =

⋃m
i=1 Ui .



Further results and conjectures

▶ πSp
n (X , x0) ⊆ ker Ψn

X for any space X .

▶ If X is T1 and paracompact, then ΠSp
n (X , x0) = πSp

n (X , x0)

▶ If X is metriazble, then ΠSp
n (X , x0) = πSp

n (X , x0)

▶ Conjecture: ker Ψn
X ⊆ πSp

n .

▶ Conjecture: ker Ψn
X = ΠSp

n (if X T1 and paracompact).
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Further results and conjectures

In the future we hope to utilize these results to extend the work of
Dr. Brazas and Dr. Fabel on the existence of the short exact
sequence:

1→ ΠSp
1 (U , x0)→ π1(X , x0)→ π1(|N(U)|,U0)→ 1

which provides certain key information about the fundamental
group of the nerve of a cover; we wish to extend this to:

0→ ΠSp
n (U , x0)→ πn(X , x0)→ πn(|N(U)|,U0)→ 0
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