Elements of higher homotopy groups undetectable by polyhedral approximation

John K. Aceti, Jeremy Brazas

August 16, 2022

Abstract

When non-trivial local structures are present in a topological space X, a common approach to characterizing the isomorphism type of the n-th homotopy group $\pi_{n}\left(X, x_{0}\right)$ is to consider the image of $\pi_{n}\left(X, x_{0}\right)$ in the n-th Čech homotopy group $\check{\pi}_{n}\left(X, x_{0}\right)$ under the canonical homomorphism $\Psi_{n}: \pi_{n}\left(X, x_{0}\right) \rightarrow \check{\pi}_{n}\left(X, x_{0}\right)$. The subgroup $\operatorname{ker}\left(\Psi_{n}\right)$ is the obstruction to this tactic as it consists of precisely those elements of $\pi_{n}\left(X, x_{0}\right)$, which cannot be detected by polyhedral approximations to X. In this paper, we use higher dimensional analogues of Spanier groups to characterize $\operatorname{ker}\left(\Psi_{n}\right)$. In particular, we prove that if X is paracompact, Hausdorff, and $U V^{n-1}$, then $\operatorname{ker}\left(\Psi_{n}\right)$ is equal to the n-th Spanier group of X. We also use the perspective of higher Spanier groups to generalize a theorem of Kozlowski-Segal, which gives conditions ensuring that Ψ_{n} is an isomorphism.

1 Introduction

When non-trivial local structures are present in a topological space, a common approach to characterizing the isomorphism type of $\pi_{n}\left(X, x_{0}\right)$ is to consider the image of $\pi_{n}\left(X, x_{0}\right)$ in the n-th Cech (shape) homotopy group $\check{\pi}_{n}\left(X, x_{0}\right)$ under the canonical homomorphism $\Psi_{n}: \pi_{n}\left(X, x_{0}\right) \rightarrow \check{\pi}_{n}\left(X, x_{0}\right)$. The n-th shape kernel $\operatorname{ker}\left(\Psi_{n}\right)$ is the obstruction to this tactic as it consists of precisely those elements of $\pi_{n}\left(X, x_{0}\right)$, which cannot be detected by polyhedral approximations to X. This method has proved successful in many situations for both the fundamental group [5, 11, 15, 17] and higher homotopy groups [3, 12, 13, 14, 21. In this paper, we study the map Ψ_{n} and give a characterization the n-th shape kernel in terms of higher-dimensional analogues of Spanier groups.

The subgroups of fundamental groups, which are now commonly referred to as "Spanier groups," first appeared in E.H. Spanier's unique approach to covering space theory [30]. If \mathscr{U} is an open cover of a topological space X and $x_{0} \in X$, then the Spanier group with respect to \mathscr{U} is the subgroup $\pi_{1}^{S p}\left(\mathscr{U}, x_{0}\right)$ of $\pi_{1}\left(X, x_{0}\right)$ generated by path-conjugates $[\alpha][\gamma][\alpha]^{-1}$ where α is a path starting at x_{0} and γ is a loop based at $\alpha(1)$ with image in some element of \mathscr{U}. These
subgroups are particularly relevant to covering space theory since, when X is locally path-connected, a subgroup $H \leqslant \pi_{1}\left(X, x_{0}\right)$ corresponds to a covering map $p:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)$ if and only if $\pi_{1}^{S p}\left(\mathscr{U}, x_{0}\right) \leqslant H$ for some open cover \mathscr{U} [30, 2.5.12]. The intersection $\pi_{1}^{S p}\left(X, x_{0}\right)=\bigcap_{\mathscr{U}} \pi_{1}^{S p}\left(\mathscr{U}, x_{0}\right)$ is called the Spanier group of $\left(X, x_{0}\right)$ [16]. The inclusion $\pi_{1}^{S p}\left(X, x_{0}\right) \subseteq \operatorname{ker}\left(\Psi_{1}\right)$ always holds [18, Prop. 4.8]. It is proved in [4, Theorem 6.1] that $\pi_{1}^{S p}\left(X, x_{0}\right)=\operatorname{ker}\left(\Psi_{1}\right)$ whenever X is paracompact Hausdorff and locally path connected. The upshot of this equality is having a description of level-wise generators (for each open cover \mathscr{U}) whereas there may be no readily available generating set for the kernel of a homomorphism induced by a canonical map from X to the nerve $|N(\mathscr{U})|$. Indeed, 1-dimensional Spanier groups have proved useful in persistence theory 32. Since much of applied topology is based on a geometric refinement of polyhedral approximation from shape theory, there seems potential for higher dimensional analogues to be useful as well.

Higher dimensional analogues of Spanier groups recently appeared in [1] and are defined in a similar way: $\pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)$ is the subgroup of $\pi_{n}\left(X, x_{0}\right)$ consisting of homotopy classes of path-conjugates $\alpha * f$ where α is a path starting at x_{0} and $f: S^{n} \rightarrow X$ is based at $\alpha(1)$ with image in some element of \mathscr{U}. Then $\pi_{n}^{S p}\left(X, x_{0}\right)$ is the intersection of these subgroups. In this paper, we prove a higher-dimensional analogue of the 1-dimensional equality $\pi_{1}^{S p}\left(X, x_{0}\right)=\operatorname{ker}\left(\Psi_{1}\right)$ from (4).

A space X is $U V^{n}$ if for every neighborhood U of a point $x \in X$, there is a neighborhood V of x in U such that every map $f: S^{k} \rightarrow V, 0 \leqslant k \leqslant n$ is null-homotopic in U, c.f. [29]. When a space is $U V^{n}$ "small" maps on spheres of dimension $\leqslant n$ contract by null-homotopies of relatively the same size. Certainly, every locally n-connected space is $U V^{n}$. However, when $n \geqslant 1$, the converse is not true even for metrizable spaces. Our main result is the following.

Theorem 1.1. Let $n \geqslant 1$ and $x_{0} \in X$. If X is paracompact, Hausdorff, and $U V^{n-1}$, then $\pi_{n}^{S p}\left(X, x_{0}\right)=\operatorname{ker}\left(\Psi_{n}\right)$.

This result confirms that higher Spanier groups, like their 1-dimensional counterparts, often identify precisely those elements of $\pi_{n}\left(X, x_{0}\right)$ which can be detected by polyhedral approximations to X. A first countable path-connected space is $U V^{0}$ if and only if it is locally path connected. Hence, in dimension $n=1$, Theorem 1.1 only expands [4, Theorem 6.1] to some non-first countable spaces.

Regarding the proof of Theorem 1.1, the inclusion $\pi_{n}^{S p}\left(X, x_{0}\right) \subseteq \operatorname{ker}\left(\Psi_{n}\right)$ was first proved for $n=1$ in [18, Prop. 4.8] and for $n \geqslant 2$ in [1, Theorem 4.14]. We include this proof for the sake of completion (Lemma 3.11). The proof of the inclusion $\operatorname{ker}\left(\Psi_{n}\right) \subseteq \pi_{n}^{S p}\left(X, x_{0}\right)$ appears in Section 5 and is more intricate, requiring a carefully chosen sequence of open cover refinements using the $U V^{n-1}$ property. These refinements allow one to recursively extend maps on simplicial complexes skeleton-wise. These extension methods, established in Section 4, are similar to methods found in [22, 23].

We also put these extension methods to work in Section 6 where we identify conditions that imply Ψ_{n} is an isomorphism. In [23, Kozlowski-Segal prove that if X is paracompact Hausdorff and $U V^{n}$, then Ψ_{n} is an isomorphism. In [18, Fischer and Zastrow generalize this result in dimension $n=1$ by replacing " $U V^{1}$ " with "locally path connected and semilocally simply connected." Similar, to the approach of Fischer-Zastrow, our use of Spanier groups shows that the existence of small null-homotopies of small maps $S^{n} \rightarrow X$ (specifically in dimension n) is not necessary to prove that Ψ_{n} is injective. We say a space X is semilocally π_{n}-trivial if for every $x \in X$ there exists an open neighborhood U of x such that every map $S^{n} \rightarrow U$ is null-homotopic in X. This definition is independent of lower dimensions but certainly $U V^{n} \Rightarrow\left(U V^{n-1}\right.$ and semilocally π_{n}-trivial). Our secondary result is the following.

Theorem 1.2. Let $n \geqslant 1$ and $x_{0} \in X$. If X is paracompact, Hausdorff, $U V^{n-1}$, and semilocally π_{n}-trivial, then $\Psi_{n}: \pi_{n}\left(X, x_{0}\right) \rightarrow \check{\pi}_{n}\left(X, x_{0}\right)$ is an isomorphism.

The hypotheses in Theorem 1.2 are the homotopical versions of the hypotheses used in [25] to ensure that the canonical homomorphism $\varphi_{*}: H_{n}(X) \rightarrow$ $\check{H}_{n}(X)$ is an isomorphism, see also [10] regarding the surjectivity of φ_{*}. Although we have only weakened the hypothesis of the Kozlowksi-Segal result in dimension n, Theorem 1.2 formally generalizes the results of both [18] and 22] and does apply to some spaces of interest, namely spaces involving cones over (or attached to) wild spaces (see Examples 7.1 and 7.3). Examples also show that Ψ_{n} can fail to be an isomorphism if X is semilocally π_{n}-trivial but not $U V^{n-1}$ (Example 7.4) or if X is $U V^{n-1}$ but not semilocally π_{n}-trivial (Example 7.5).

2 Preliminaries and Notation

Throughout this paper, X is assumed to be a path-connected topological space with basepoint x_{0}. The unit interval is denoted I and S^{n} is the unit n-sphere with basepoint $d_{0}=(1,0, \ldots, 0)$. The n-th homotopy group of $\left(X, x_{0}\right)$ is denoted $\pi_{n}\left(X, x_{0}\right)$. If $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ is a based map, then $f_{\#}: \pi_{n}\left(X, x_{0}\right) \rightarrow$ $\pi_{n}\left(Y, y_{0}\right)$ is the induced homomorphism.

A path in a space X is a map $\alpha: I \rightarrow X$ from the unit interval. The reverse of α is the path given by $\alpha^{-}(t)=\alpha(1-t)$ and the concatenation of two paths α, β with $\alpha(1)=\beta(0)$ is denoted $\alpha \cdot \beta$. Similarly, if $f, g: S^{n} \rightarrow X$ are maps based at $x \in X$, then $f \cdot g$ denotes the usual n-loop concatenation and f^{-}denotes the reverse map. We may write $\prod_{i=1}^{m} f_{i}$ to denote an m-fold concatenation $f_{1} \cdot f_{2} \cdot \cdots \cdot f_{m}$.

2.1 Simplicial complexes

We make heavy use of standard notation and theory of abstract and geometric simplicial complexes, which can be found in texts such as [26] and [28]. We briefly recall relevant notation.

If K is an abstract or geometric simplicial complex and $r \geqslant 0$ is an integer, K_{r} denotes the r-skeleton of K. If K is abstract, $|K|$ denotes the geometric realization of K. If K is geometric, then $\mathrm{sd}^{m} K$ denotes the m-th barycentric subdivision of K and if v is a vertex of K, then $\operatorname{st}(v, K)$ denotes the open star of the vertex v. When $L \subseteq K$ is a subcomplex, $\operatorname{sd}^{m} L$ is a subcomplex of $\operatorname{sd}^{m} K$. If $\sigma=\left\{v_{0}, v_{1}, \ldots, v_{r}\right\}$ is an r-simplex of K, then $\left[v_{0}, v_{1}, \ldots, v_{r}\right]$ denotes the r-simplex of $|K|$ with the indicated orientation.

We frequently make use of the standard n-simplex Δ_{n} in \mathbb{R}^{n} spanned by the origin d_{0} and standard unit vectors. Since the boundary $\partial \Delta_{n}=\Delta_{n}=\left(\Delta_{n}\right)_{n-1}$ is homeomorphic to S^{n-1}, we fix a based homeomorphism $\partial \Delta_{n} \cong S^{n-1}$ that allows us to represent elements of $\pi_{n}\left(X, x_{0}\right)$ by maps $\left(\partial \Delta_{n+1}, d_{0}\right) \rightarrow\left(X, x_{0}\right)$.

2.2 The Čech expansion and shape homotopy groups

We now recall the construction of the first shape homotopy group $\check{\pi}_{1}\left(X, x_{0}\right)$ via the Čech expansion. For more details, see [26].

Let $\mathcal{O}(X)$ be the set of open covers of X direct by refinement; we write $\mathscr{U} \leq \mathscr{V}$ when \mathscr{V} refines \mathscr{U}. Similarly, let $\mathcal{O}\left(X, x_{0}\right)$ be the set of open covers with a distinguished element containing the basepoint, i.e. the set of pairs $\left(\mathscr{U}, U_{0}\right)$ where $\mathscr{U} \in \mathcal{O}(X), U_{0} \in \mathscr{U}$, and $x_{0} \in U_{0}$. We say $\left(\mathscr{V}, V_{0}\right)$ refines $\left(\mathscr{U}, U_{0}\right)$ if $\mathscr{U} \leq \mathscr{V}$ and $V_{0} \subseteq U_{0}$.

The nerve of a cover $\left(\mathscr{U}, U_{0}\right) \in \mathcal{O}\left(X, x_{0}\right)$ is the abstract simplicial complex $N(\mathscr{U})$ whose vertex set is $N(\mathscr{U})_{0}=\mathscr{U}$ and vertices $A_{0}, \ldots, A_{n} \in \mathscr{U}$ span an n-simplex if $\bigcap_{i=0}^{n} A_{i} \neq \varnothing$. The vertex U_{0} is taken to be the basepoint of the geometric realization $|N(\mathscr{U})|$. Whenever $\left(\mathscr{V}, V_{0}\right)$ refines $\left(\mathscr{U}, U_{0}\right)$, we can construct a simplicial map $p_{\mathscr{U} \mathscr{V}}: N(\mathscr{V}) \rightarrow N(\mathscr{U})$, called a projection, given by sending a vertex $V \in N(\mathscr{V})$ to a vertex $U \in \mathscr{U}$ such that $V \subseteq U$. In particular, V_{0} must be sent to U_{0}. Any such assignment of vertices extends linearly to a simplicial map. Moreover, the induced map $\left|p_{\mathscr{U} \mathscr{V}}\right|:|N(\mathscr{V})| \rightarrow|N(\mathscr{U})|$ is unique up to based homotopy. Thus the homomorphism $p_{\mathscr{U} \mathscr{V}} \#: \pi_{1}\left(|N(\mathscr{V})|, V_{0}\right) \rightarrow$ $\pi_{1}\left(|N(\mathscr{U})|, U_{0}\right)$ induced on fundamental groups is (up to coherent isomorphism) independent of the choice of simplicial map.

Recall that an open cover \mathscr{U} of X is normal if it admits a partition of unity subordinated to \mathscr{U}. Let Λ be the subset of $\mathcal{O}\left(X, x_{0}\right)$ (also directed by refinement) consisting of pairs $\left(\mathscr{U}, U_{0}\right)$ where \mathscr{U} is a normal open cover of X and such that there is a partition of unity $\left\{\phi_{U}\right\}_{U \in \mathscr{U}}$ subordinated to \mathscr{U} with $\phi_{U_{0}}\left(x_{0}\right)=1$. It is well-known that every open cover of a paracompact Hausdorff space X is normal. Moreover, if $\left(\mathscr{U}, U_{0}\right) \in \mathcal{O}\left(X, x_{0}\right)$, it is easy to refine $\left(\mathscr{U}, U_{0}\right)$ to a cover $\left(\mathscr{V}, V_{0}\right)$ such that V_{0} is the only element of \mathscr{V} containing x_{0} and therefore $\left(\mathscr{V}, V_{0}\right) \in \Lambda$. Thus, for paracompact Hausdorff X, Λ is cofinal in $\mathcal{O}\left(X, x_{0}\right)$.

The n-th shape homotopy group is the inverse limit

$$
\check{\pi}_{n}\left(X, x_{0}\right)=\lim _{\leftrightarrows}\left(\pi_{n}\left(|N(\mathscr{U})|, U_{0}\right), p_{\mathscr{U} \mathscr{V} \#}, \Lambda\right) .
$$

This group is also referred to as the n-th Čech homotopy group.

Given an open cover $\left(\mathscr{U}, U_{0}\right) \in \mathcal{O}\left(X, x_{0}\right)$, a map $p_{\mathscr{U}}: X \rightarrow|N(\mathscr{U})|$ is a (based) canonical map if $p_{\mathscr{U}}^{-1}(\operatorname{st}(U, N(\mathscr{U}))) \subseteq U$ for each $U \in \mathscr{U}$ and $p_{\mathscr{U}}\left(x_{0}\right)=$ U_{0}. Such a canonical map is guaranteed to exist if $\left(\mathscr{U}, U_{0}\right) \in \Lambda$: find a locally finite partition of unity $\left\{\phi_{U}\right\}_{U \in \mathscr{U}}$ subordinated to \mathscr{U} such that $\phi_{U_{0}}\left(x_{0}\right)=1$. When $U \in \mathscr{U}$ and $x \in U$, determine $p_{\mathscr{U}}(x)$ by requiring its barycentric coordinate belonging to the vertex U of $|N(\mathscr{U})|$ to be $\phi_{U}(x)$. According to this construction, the requirement $\phi_{U_{0}}\left(x_{0}\right)=1$ gives $p_{\mathscr{U}}\left(x_{0}\right)=U_{0}$.

A canonical map $p_{\mathscr{U}}$ is unique up to based homotopy and whenever $\left(\mathscr{V}, V_{0}\right)$ refines $\left(\mathscr{U}, U_{0}\right)$; the compositions $p_{\mathscr{U} \mathscr{V}} \circ p_{\mathscr{V}}$ and $p_{\mathscr{U}}$ are homotopic as based maps. Hence, for $n \geqslant 1$, the homomorphisms $p_{\mathscr{U} \#}: \pi_{n}\left(X, x_{0}\right) \rightarrow \pi_{n}\left(|N(\mathscr{U})|, U_{0}\right)$ satisfy $p_{\mathscr{U} \mathscr{V}}{ }^{\circ} p_{\mathscr{V}} \#=p_{\mathscr{U} \#}$. These homomorphisms induce the following canonical homomorphism to the limit, which is natural in X :

$$
\Psi_{n}: \pi_{n}\left(X, x_{0}\right) \rightarrow \check{\pi}_{n}\left(X, x_{0}\right) \text { given by } \Psi_{n}([f])=\left(\left[p_{\mathscr{U}} \circ f\right]\right)
$$

The subgroup $\operatorname{ker}\left(\Psi_{n}\right)$, which we refer to as the n-th shape kernel is, in a sense, a rough algebraic measure of the n-dimensional homotopical information lost when approximating X by polyhedra. Specifically, $[f] \in \pi_{n}\left(X, x_{0}\right) \backslash \operatorname{ker}\left(\Psi_{n}\right)$ if and only if there exists some polyhedron K and map $p:\left(X, x_{0}\right) \rightarrow\left(K, k_{0}\right)$ such that $p_{\#}([f]) \neq 0$ in $\pi_{n}\left(K, k_{0}\right)$. Of utmost important is the situation when $\operatorname{ker}\left(\Psi_{n}\right)=1$. In this case, $\pi_{n}\left(X, x_{0}\right)$ can be understood as a subgroup of $\check{\pi}_{n}\left(X, x_{0}\right)$, that is, the n-th shape group retains all the data in the n-th homotopy group of X. A space for which $\operatorname{ker}\left(\Psi_{n}\right)=1$ is said to be π_{n}-shape injective.

3 Higher Spanier Groups

To define higher Spanier groups as in [1], we briefly recall the action of the fundamental groupoid on the higher homotopy groups of a space. Fix a retraction $R: S^{n} \times I \rightarrow S^{n} \times\{0\} \cup\left\{d_{0}\right\} \times I$. Given a map $f:\left(S^{n}, d_{0}\right) \rightarrow(X, y)$ and a path $\alpha: I \rightarrow X$ with $\alpha(0)=x$ and $\alpha(1)=y$, define $F: S^{n} \times\{0\} \cup\left\{d_{0}\right\} \times I \rightarrow X$ so that $g(x, 0)=f(x)$ and $f\left(d_{0}, t\right)=\alpha(1-t)$. The the path-conjugate of f by α is the map $\alpha * f:\left(S^{n}, d_{0}\right) \rightarrow(X, x)$ given by $\alpha * f(x)=F \circ R(x, 0)$.

Path-conjugation defines the basepoint-change isomorphism $\varphi_{\alpha}: \pi_{n}(X, y) \rightarrow$ $\pi_{n}(X, x), \varphi_{\alpha}([f])=[\alpha * f]$. In particular, $[\alpha * f][\alpha * g]=[\alpha *(f \cdot g)]$ and if $[\alpha]=[\beta]$, then $[\alpha * f]=[\beta * f]$. Note that when $n=1, f: S^{1} \rightarrow X$ is a loop and $\alpha * f \simeq \alpha \cdot f \cdot \alpha^{-}$.

Definition 3.1. Let $n \geqslant 1$ and $\alpha:(I, 0) \rightarrow\left(X, x_{0}\right)$ be a path and U be an open neighborhood of $\alpha(1)$ in X. Define

$$
[\alpha] * \pi_{n}(U)=\left\{[\alpha * f] \in \pi_{n}\left(X, x_{0}\right) \mid f\left(S^{n}\right) \subseteq U\right\}
$$

Since $[\alpha * f][\alpha * g]=[\alpha *(f \cdot g)]$, the set $[\alpha] * \pi_{n}(U)$ is a subgroup of $\pi_{n}\left(X, x_{0}\right)$.

Definition 3.2. Let $n \geqslant 1, \mathscr{U}$ be an open cover of X, and $x_{0} \in X$. The n-th Spanier group of $\left(X, x_{0}\right)$ with respect to \mathscr{U} is the subgroup $\pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)$ of $\pi_{n}\left(X, x_{0}\right)$ generated by the subgroups $[\alpha] * \pi_{n}(U)$ for all pairs (α, U) with $\alpha(1) \in U$ and $U \in \mathscr{U}$. In short:

$$
\pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)=\left\langle[\alpha] * \pi_{n}(U) \mid U \in \mathscr{U}, \alpha(1) \in U\right\rangle
$$

The n-th Spanier group of $\left(X, x_{0}\right)$ is the intersection

$$
\pi_{n}^{S p}\left(X, x_{0}\right)=\bigcap_{\mathscr{U} \in O(X)} \pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)
$$

Remark 3.3. We note that our definition of n-th Spanier group is the "unbased" definition from [1]; see also [16] for more on "based" Spanier groups, which is defined using covers of X by pointed open sets. The two notions agree for locally path connected spaces. When $n=1$, Spanier groups (absolute and relative to a cover) are normal subgroups of $\pi_{1}\left(X, x_{0}\right)$. Certainly, the same is true for $n \geqslant 2$ since higher homotopy groups are abelian. In the case $n=1$, Spanier groups have been studied heavily due to their relationship to covering space theory 30 .

Remark 3.4 (Functorality). If $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ is a map and \mathscr{V} is an open cover of Y, then $\mathscr{U}=\left\{f^{-1}(V) \mid V \in \mathscr{V}\right\}$ is an open cover of X such that $f_{\#}\left(\pi_{n}\left(\mathscr{U}, x_{0}\right)\right) \subseteq \pi_{n}\left(\mathscr{V}, y_{0}\right)$. It follows that $f_{\#}\left(\pi_{n}^{S p}\left(X, x_{0}\right)\right) \subseteq \pi_{n}^{S p}\left(Y, y_{0}\right)$. Thus $\left.\left(f_{\#}\right)\right|_{\pi_{n}^{S p}\left(X, x_{0}\right)}: \pi_{n}^{S p}\left(X, x_{0}\right) \rightarrow \pi_{n}^{S p}\left(Y, y_{0}\right)$ is well-defined showing that $\pi_{1}^{S p}: \mathbf{T o p}_{*} \rightarrow \mathbf{G r p}$ and $\pi_{n}^{S p}: \mathbf{T o p}_{*} \rightarrow \mathbf{A b}, n \geqslant 2$, are functors [1, Theorem 4.2]. Moreover, if $g:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)$ is a based homotopy inverse of f, then $\left.\left(f_{\#}\right)\right|_{\pi_{n}^{S p}\left(X, x_{0}\right)}$ and $\left.\left(g_{\#}\right)\right|_{\pi_{n}^{S p}\left(Y, y_{0}\right)}$ are inverse isomorphisms. Hence, these functors descend to functors $\mathbf{h T o p}{ }_{*} \rightarrow \mathbf{G r p}$ and $\mathbf{h T o p}{ }_{*} \rightarrow \mathbf{A b}$ on the based homotopy category.

Remark 3.5 (Basepoint invariance). Suppose $x_{0}, x_{1} \in X$ and $\beta: I \rightarrow X$ is a path from x_{1} to x_{0}, and $\varphi_{\beta}: \pi_{n}\left(X, x_{0}\right) \rightarrow \pi_{n}\left(X, x_{1}\right), \varphi_{\beta}([g])=[\beta * g]$ is the basepoint-change isomorphism. If $[\alpha * f]$ is a generator of $\pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)$, then $\varphi_{\beta}([\alpha * f])=[(\beta \cdot \alpha) * f]$ is a generator of $\pi_{n}^{S p}\left(\mathscr{U}, x_{1}\right)$. It follows that $\varphi_{\beta}\left(\pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)\right)=\pi_{n}^{S p}\left(\mathscr{U}, x_{1}\right)$. Moreover, in the absolute case, we have $\varphi_{\beta}\left(\pi_{n}^{S p}\left(X, x_{0}\right)\right)=\pi_{n}^{S p}\left(X, x_{1}\right)$. In particular, changing the basepoint of X does not change the isomorphism type of the n-th Spanier group, particularly whether it is trivial or not.

In terms of our choice of generators, a generic element of $\pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)$ is a product $\prod_{i=1}^{m}\left[\alpha_{i} * f_{i}\right]$ where each map $f_{i}: S^{n} \rightarrow X$ has an image in some open set $U_{i} \in \mathscr{U}$ (see Figure 1). The next lemma identifies how such products might actually appear in practice and motivates the proof of our key technical Lemma below (Lemma 5.1). Recall that $\left(\mathrm{sd}^{m} \Delta_{n+1}\right)_{n}$ is the union of the boundaries of the $(n+1)$-simplices in the m-th barycentric subdivision sd ${ }^{m} \Delta_{n+1}$.

Figure 1: An element of $\pi_{2}^{S p}\left(\mathscr{U}, x_{0}\right)$, which is a product of three path-conjugate generators $\left[\alpha_{i} * f_{i}\right]$.

Lemma 3.6. If $m, n \in \mathbb{N}, \mathscr{U}$ is an open cover of X, and $f:\left(\left(s d^{m} \Delta_{n+1}\right)_{n}, d_{0}\right) \rightarrow$ $\left(X, x_{0}\right)$ is a map such that for every $(n+1)$-simplex σ of $s d^{m} \Delta_{n+1}$, we have $f(\partial \sigma) \subseteq U$ for some $U \in \mathscr{U}$, then $f_{\#}\left(\pi_{n}\left(\left(s d^{m} \Delta_{n+1}\right)_{n}, d_{0}\right)\right) \subseteq \pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)$.
Proof. The case $n=1$ is proved in [4]. Suppose $n \geqslant 2$ and set $K=\operatorname{sd}^{m} \Delta_{n+1}$. The set $\mathscr{W}=\left\{f^{-1}(U) \mid U \in \mathscr{U}\right\}$ is an open cover of K_{n} such that $f_{\#}\left(\pi_{n}^{S p}\left(\mathscr{W}, d_{0}\right)\right) \subseteq$ $\pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)$ and for every $(n+1)$-simplex σ in K, we have $\partial \sigma \subseteq f^{-1}(U)$ for some $U \in \mathscr{U}$. Thus it suffices to prove $\pi_{n}^{S p}\left(\mathscr{W}, d_{0}\right)=\pi_{n}\left(K_{n}, d_{0}\right)$. Let S be the set of n-simplices of K. Since $n \geqslant 2, K_{n}$ is simply connected. Standard simplicial homology arguments give that the reduced singular homology groups of K_{n} are trivial in dimension $<n$ and $H_{n}\left(K_{n}\right)$ is finitely generated free abelian generated. A set of free generators for $H_{n}\left(K_{n}\right)$ can be chosen by fixing the homology class of a simplicial map $g_{\sigma}: \partial \Delta_{n+1} \rightarrow K_{n}$ that sends $\partial \Delta_{n+1}$ homeomorphically onto the boundary of an $(n+1)$-simplex of $\sigma \in S$. Thus K_{n} is $(n-1)$-connected and the Hurewicz homomorphism $h: \pi_{k}\left(K_{n}, d_{0}\right) \rightarrow H_{k}\left(K_{n}\right)$ is an isomorphism for all $1 \leqslant k \leqslant n$. In particular, let $p_{\sigma}: I \rightarrow K_{n}$ be any path from d_{0} to $g_{\sigma}\left(d_{0}\right)$. Then $\pi_{n}\left(K_{n}, d_{0}\right)$ is freely generated by the path-conjugates $\left[p_{\sigma} * g_{\sigma}\right], \sigma \in S$. By assumption, for every $\sigma \in S,\left[p_{\sigma} * g_{\sigma}\right]$ is a generator of $\pi_{n}^{S p}\left(\mathscr{W}, d_{0}\right)$. Since $\pi_{n}^{S p}\left(\mathscr{W}, d_{0}\right)$ contains all the generators of $\pi_{n}\left(K_{n}, d_{0}\right)$, the equality $\pi_{n}^{S p}\left(\mathscr{W}, d_{0}\right)=\pi_{n}\left(K_{n}, d_{0}\right)$ follows.

To characterize the triviality of relative Spanier groups, we establish the following terminology.

Definition 3.7. Let $n \geqslant 0$. We say a space X is
(1) semilocally π_{n}-trivial at $x \in X$ if there exists an open neighborhood U of X such that every map $S^{n} \rightarrow U$ is null-homotopic in X.
(2) semilocally n-connected at $x \in X$ if there exists an open neighborhood U of X such that every map $S^{k} \rightarrow X, 0 \leqslant k \leqslant n$ is null-homotopic in X.

We say X is semilocally π_{n}-trivial (resp. semilocally n-connected) if it has this property at all of its points.

It is straightforward to see that X is semilocally n-connected at $x \in X$ if and only if X is semilocally π_{k}-trivial for all $0 \leqslant k \leqslant n$.

Remark 3.8. Note that a space X is semilocally π_{n}-trivial if and only if X admits an open cover \mathscr{U} such that $\pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)$ is trivial [1, Theorem 3.7]. Moreover, X is semilocally n-connected if and only if X admits an open cover \mathscr{U} such that $\pi_{k}^{S p}\left(\mathscr{U}, x_{0}\right)$ is trivial for all $1 \leqslant k \leqslant n$.

Attempting a proof of Theorem 1.1, one should not expect the groups $\pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)$ and $\operatorname{ker}\left(p_{\mathscr{U} \#}\right)$ to agree "on the nose." Indeed, the following example shows that we should not expect the equality $\pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)=\operatorname{ker}\left(p_{\mathscr{U} \#}\right)$ to hold even in the "nicest" local circumstances.

Example 3.9. Let $X=S^{2} \vee S^{2}$ and W be a contractible neighborhood of d_{0} in S^{2}. Set $U_{1}=S^{2} \vee W$ and $U_{2}=W \vee S^{2}$ and consider the open cover $\mathscr{U}=\left\{U_{1}, U_{2}\right\}$ of X. Then $\pi_{3}^{S p}\left(\mathscr{U}, x_{0}\right) \cong \mathbb{Z}^{2}$ is freely generated by the homotopy classes of the two inclusions $i_{1}, i_{2}: S^{2} \rightarrow X$. However, $\pi_{3}(X) \cong \mathbb{Z}^{3}$ is freely generated by $\left[i_{1}\right],\left[i_{2}\right]$, and the Whitehead product $\llbracket i_{1}, i_{2} \rrbracket$. However $|N(\mathscr{U})|$ is a 1 -simplex and is therefore contractible. Thus $\operatorname{ker}\left(p_{\mathscr{U} \#}\right)$ is equal to $\pi_{3}(X)$ and contains $\llbracket i_{1}, i_{2} \rrbracket$. Even though the spaces X, U_{1}, U_{2} are locally contractible and the elements of \mathscr{U} are 1-connected, $\pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)$ is a proper subgroup of $\operatorname{ker}\left(p_{\mathscr{U} \#}\right)$. One can view this failure as the result of two facts: (1) The sets U_{i} are not 2 -connected and (2) the definition of Spanier group does not allow one to generate homotopy classes by taking Whitehead products of maps $S^{2} \rightarrow U_{i}$ in the neighboring elements of \mathscr{U}.

First, we show the inclusion $\pi_{n}^{S p}\left(X, x_{0}\right) \subseteq \operatorname{ker}\left(\Psi_{n}\right)$ holds in full generality. Recall the intersections $\pi_{n}^{S p}\left(X, x_{0}\right)=\bigcap_{\mathscr{U} \in O(X)} \pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)$ and $\operatorname{ker}\left(\Psi_{n}\right)=$ $\bigcap_{\left(\mathscr{U}, U_{0}\right) \in \Lambda} \operatorname{ker}\left(p_{\mathscr{U} \#}\right)$ are formally indexed by different sets.

Lemma 3.10. For every open cover \mathscr{U} of X and canonical map p $\mathscr{U}: X \rightarrow$ $|N(\mathscr{U})|$, there exists a refinement $\mathscr{U} \leq \mathscr{V}$ such that $\pi_{n}^{S p}\left(\mathscr{V}, x_{0}\right) \subseteq \operatorname{ker}\left(p_{\mathscr{U} \#}\right)$ in $\pi_{n}\left(X, x_{0}\right)$.

Proof. Let $\mathscr{U} \in O(X)$. The stars $\operatorname{st}(U,|N(\mathscr{U})|), U \in \mathscr{U}$ form an open cover of $|N(\mathscr{U})|$ and therefore $\mathscr{V}=\left\{p_{\mathscr{U}}^{-1}(\operatorname{st}(U,|N(\mathscr{U})|)) \mid U \in \mathscr{U}\right\}$ is an open cover of X. Since $p_{\mathscr{U}}$ is a canonical map, we have $p_{\mathscr{U}}^{-1}(\operatorname{st}(U,|N(\mathscr{U})|)) \subseteq U$ for all $U \in \mathscr{U}$. Thus \mathscr{V} is a refinement of \mathscr{U}. A generator of $\pi_{n}^{S p}\left(\mathscr{V}, x_{0}\right)$ is of the form $[\alpha * f]$ for a map $f: S^{n} \rightarrow p_{\mathscr{U}}^{-1}(\operatorname{st}(U,|N(\mathscr{U})|))$. However, $p_{\mathscr{U}} \circ f$ has image in the contractible open $\operatorname{set} \operatorname{st}(U,|N(\mathscr{U})|)$ and is therefore null-homotopic. Thus $p_{\mathscr{U} \#}([\alpha * f])=0$. We conclude that $p_{\mathscr{U} \#}\left(\pi_{n}^{S p}\left(\mathscr{V}, x_{0}\right)\right)=0$.

Corollary 3.11. [1, Theorem 4.14] Let $n \geqslant 1$. For any based space $\left(X, x_{0}\right)$, we have $\pi_{n}^{S p}\left(X, x_{0}\right) \subseteq \operatorname{ker}\left(\Psi_{n}\right)$.

Proof. Suppose $[f] \in \pi_{n}^{S p}\left(X, x_{0}\right)$. Given a normal, based open cover $\left(\mathscr{U}, U_{0}\right) \in \Lambda$ and any canonical map $p_{\mathscr{U}}: X \rightarrow|N(\mathscr{U})|$, Lemma 3.10 ensures we can find a refinement $\mathscr{U} \leq \mathscr{V}$ such that $\pi_{n}^{S p}\left(\mathscr{V}, x_{0}\right) \subseteq \operatorname{ker}\left(p_{\mathscr{U} \#}\right)$. Thus $[f] \in \pi_{n}^{S p}\left(\mathscr{V}, x_{0}\right) \subseteq$ $\operatorname{ker}\left(p_{\mathscr{U} \#}\right)$, which shows that $[f] \in \operatorname{ker}\left(\Psi_{n}\right)$.

Example 3.12 (higher earring spaces). An important space, which we will call upon repeatedly for examples, is the n-dimensional earring space

$$
\mathbb{E}_{n}=\bigcup_{j \in \mathbb{N}}\left\{\mathbf{x} \in \mathbb{R}^{n+1} \mid\|\mathbf{x}-(1 / j, 0,0, \ldots, 0)\|=1 / j\right\}
$$

which is a shrinking wedge (one-point union) of n-spheres with basepoint $b_{0}=$ $(0,0, \ldots, 0)$. It is known that \mathbb{E}_{n} is $(n-1)$-connected, locally $(n-1)$-connected, and π_{n}-shape injective for all $n \geqslant 1$ [27, 12]. However, \mathbb{E}_{n} is not semilocally π_{n}-trivial. Thus $\pi_{n}^{S p}\left(\mathscr{U}, b_{0}\right) \neq 0$ for any open cover \mathscr{U} of \mathbb{E}_{n} even though "in the limit" $\pi_{n}^{S p}\left(\mathbb{E}_{n}, b_{0}\right)$ is trivial.
Example 3.13. Let $n \geqslant 3$ and notice that $\mathbb{E}_{1} \vee \mathbb{E}_{n}$ is not semilocally π_{1} connected (since it has \mathbb{E}_{1} as a retract) and therefore fails to be semilocally $(n-1)$-connected. However, it has recently been shown that $\pi_{k}\left(\mathbb{E}_{1} \vee \mathbb{E}_{n}\right)=0$ for $2 \leqslant k \leqslant n-1$ and that $\mathbb{E}_{1} \vee \mathbb{E}_{n}$ is π_{n}-shape injective [3]. Thus $\mathbb{E}_{1} \vee \mathbb{E}_{n}$ is semilocally π_{k}-trivial for all $k \leqslant n-1$ except $k=1$ and $\pi_{n}^{S p}\left(\mathbb{E}_{1} \vee \mathbb{E}_{n}, b_{0}\right)=0$. Thus the failure to be semilocally n-connected can occur at single dimension less than n.

4 Recursive Extension Lemmas

Toward a proof of the inclusion $\operatorname{ker}\left(\Psi_{n}\right) \subseteq \pi_{n}^{S p}\left(X, x_{0}\right)$, we introduce some convenient notation and definitions. If \mathscr{U} is an open cover and $A \subseteq X$, then $\operatorname{St}(A, \mathscr{U})=\bigcup\{U \in \mathscr{U} \mid A \cap U \neq \varnothing\}$. Note that if $A \subseteq B$, then $\operatorname{St}(A, \mathscr{U}) \subseteq \operatorname{St}(B, \mathscr{U})$. Also if $\mathscr{U} \leq \mathscr{V}$, then $\operatorname{St}(A, \mathscr{V}) \subseteq \operatorname{St}(A, \mathscr{U})$. We take the following terminology from [33].
Definition 4.1. Let $\mathscr{U}, \mathscr{V} \in O(X)$.
(1) We say \mathscr{V} is a barycentric-star refinement of \mathscr{U} if for every $x \in X$, we have $\operatorname{St}(x, \mathscr{V}) \subseteq U$ for some $U \in \mathscr{U}$. We write $\mathscr{U} \leq_{*} \mathscr{V}$.
(2) We say \mathscr{V} is a star refinement of \mathscr{U} if for every $V \in \mathscr{V}$, we have $\operatorname{St}(V, \mathscr{V}) \subseteq$ U for some $U \in \mathscr{U}$. We write $\mathscr{U} \leq_{* *} \mathscr{V}$.

Note that if $\mathscr{U} \leq_{*} \mathscr{V} \leq_{*} \mathscr{W}$, then $\mathscr{U} \leq_{* *} \mathscr{W}$.
Lemma 4.2. 31] $A T_{1}$ space X is paracompact if and only if for every open cover \mathscr{U} of X there exists an open cover \mathscr{V} such that $\mathscr{U} \leq_{*} \mathscr{V}$.

Definition 4.3. 29] Let $n \in\{0,1,2,3, \ldots, \infty\}$. A space X is $U V^{n}$ at $x \in X$ and every neighborhood U of x, there exists a neighborhood V of x such that $V \subseteq U$ and such that for all $0 \leqslant k \leqslant n(k<\infty$ if $n=\infty)$, every map $f: \partial \Delta_{k+1} \rightarrow V$ extends to a map $g: \Delta_{k+1} \rightarrow U$. We say X is $U V^{n}$ if X is $U V^{n}$ at all of its points.

We have the following evident implications for both the point-wise and global properties:
X is locally n-connected $\Rightarrow X$ is $U V^{n} \Rightarrow X$ is semilocally n-connected
For first countable spaces, the $U V^{n}$ property is equivalent to the " n-tame" property in [3] defined in terms of shrinking sequences of maps.
Remark 4.4. In much of the Shape Theory literature, the $U V^{n}$ property is referred to as the " $L C^{n}$ property" [26, p. 40]. This is sometimes confused with local n-connectedness in which one has a basis of n-connected open sets. Since the two are not equivalent even for Peano continua, we prefer the " $U V^{n}$ " terminology.

Definition 4.5. Suppose $\mathscr{U} \leq \mathscr{V}$ in $O(X)$.
(1) We say \mathscr{V} is an n-refinement of \mathscr{U}, and write $\mathscr{U} \leq^{n} \mathscr{V}$, if for all $1 \leqslant k \leqslant n$, $V \in \mathscr{V}$, and maps $f: \partial \Delta_{k+1} \rightarrow V$, there exists $U \in \mathscr{U}$ with $V \subseteq U$ and a continuous extension $g: \Delta_{k+1} \rightarrow U$ of f.
(2) We say \mathscr{V} is an n-barycentric-star refinement of \mathscr{U}, and write $\mathscr{U} \leq_{*}^{n} \mathscr{V}$, if for every $0 \leqslant k \leqslant n$, for every $x \in X$, and every map $f: \partial \Delta_{k+1} \rightarrow$ $\operatorname{St}(x, \mathscr{V})$, there exists $U \in \mathscr{U}$ with $\operatorname{St}(x, \mathscr{V}) \subseteq U$ and a continuous extension $g: \Delta_{k+1} \rightarrow U$ of f.
Note that if $\mathscr{U} \leq^{n} \mathscr{V}\left(\right.$ resp. $\left.\mathscr{U} \leq_{*}^{n} \mathscr{V}\right)$, then $\mathscr{U} \leq^{k} \mathscr{V}\left(\right.$ resp. $\left.\mathscr{U} \leq_{*}^{k} \mathscr{V}\right)$ for all $0 \leqslant k \leqslant n$.
Lemma 4.6. Suppose X is paracompact, Hausdorff, and $U V^{n}$. For every $\mathscr{U} \in$ $O(X)$, there exists $\mathscr{V} \in O(X)$ such that $\mathscr{U} \leq_{*}^{n} \mathscr{V}$.
Proof. Let $\mathscr{U} \in O(X)$. Since X is $U V^{n}$, for every $U \in \mathscr{U}$ and $x \in U$, there exists an open neighborhood $W(U, x)$ such that $W(U, x) \subseteq U$ and such that for all $1 \leqslant k \leqslant n$, each map $f: \partial \Delta_{k+1} \rightarrow W(U, x)$ extends to a map $g: \Delta_{k+1} \rightarrow U$. Let $\mathscr{W}=\{W(U, x) \mid U \in \mathscr{U}, x \in U\}$ and note $\mathscr{U} \leq^{n} \mathscr{W}$. Since X is paracompact Hausdorff, by Lemma 4.2, there exists $\mathscr{V} \in O(X)$ such that $\mathscr{W} \leq_{*} \mathscr{V}$.

Fix $x^{\prime} \in X$. Then $\operatorname{St}\left(x^{\prime}, \mathscr{V}\right) \subseteq W(U, x)$ for some $x \in U \in \mathscr{U}$. Then $\operatorname{St}\left(x^{\prime}, \mathscr{V}\right) \subseteq U$. Moreover, if $1 \leqslant k \leqslant n$ and $f: \partial \Delta_{k+1} \rightarrow \operatorname{St}\left(x^{\prime}, \mathscr{V}\right)$ is a map, then since f has image in $W(U, x)$, there is an extension $g: \Delta_{k+1} \rightarrow U$. This verifies that $\mathscr{U} \leq_{*}^{n} \mathscr{V}$.

For the next two lemmas, we fix $n \in \mathbb{N}$, a geometric simplicial complex K consisting of $(n+1)$-simplices and their faces, and a subcomplex $L \subseteq K$ with $\operatorname{dim}(L) \leqslant n$. Let $M[k]=L \cup K_{k}$ denote the union of L and the k-skeleton of K. Since $L \subseteq K_{n}, M[n]=K_{n}$ is the union of the boundaries of the $(n+1)$ simplices of K. Later we will consider the cases where (1) $K=\operatorname{sd}^{m} \Delta_{n+1}$ and $L=\operatorname{sd}^{m} \partial \Delta_{n+1}$ and (2) $K=\operatorname{sd}^{m} \partial \Delta_{n+2}$ and $L=\left\{d_{0}\right\}$.
Lemma 4.7 (Recursive Extensions). Suppose $1 \leqslant k \leqslant n$, $\mathscr{U} \leq_{*} \mathscr{V} \leq_{*}^{k-1} \mathscr{W}$, $m \in \mathbb{N}$, and $f: M[k-1] \rightarrow X$ is a map such that for every $n+1$-simplex σ of K, we have $f(\sigma \cap M[k-1]) \subseteq W_{\sigma}$ for some $W_{\sigma} \in \mathscr{W}$. Then there exists a continuous extension $g: M[k] \rightarrow X$ of f such that for every $(n+1)$-simplex σ of K, we have $g(\sigma \cap M[k]) \subseteq U_{\sigma}$ for some $U_{\sigma} \in \mathscr{U}$.

Proof. Supposing the hypothesis, we must extend f to the k-simplices of $M[k]$ that do not lie in L. Let τ be a k-simplex of $M[k]$ that does not lie in L and let S_{τ} be the set of $(n+1)$-simplices in K that contain τ. By assumption, S_{τ} is non-empty. We make some general observations first. Since f maps the $(k-1)$-skeleton of each $(n+1)$-simplex $\sigma \in S_{\tau}$ into W_{σ} and $\partial \tau$ lies in this $(k-1)$-skeleton, we have $f(\partial \tau) \subseteq \bigcap_{\sigma \in S_{\tau}} W_{\sigma}$. Thus, for all τ, we have

$$
f(\partial \tau) \subseteq \bigcap_{\sigma \in S_{\tau}} \operatorname{St}\left(W_{\sigma}, \mathscr{V}\right)
$$

Fix a vertex v_{τ} of τ and let $x_{\tau}=f\left(v_{\tau}\right)$. Then $x_{\tau} \in W_{\sigma} \subseteq \operatorname{St}\left(x_{\tau}, \mathscr{W}\right)$ whenever $\sigma \in S_{\tau}$. Since $\mathscr{V} \leq_{*}^{k-1} \mathscr{W}$, we may find $V_{\tau} \in \mathscr{V}$ such that $\operatorname{St}\left(x_{\tau}, \mathscr{W}\right) \subseteq$ V_{τ} and such that every map $\partial \Delta_{k} \rightarrow \operatorname{St}\left(x_{\tau}, \mathscr{W}\right)$ extends to a map $\Delta_{k} \rightarrow V_{\tau}$. In particular, $\left.f\right|_{\partial \tau}: \partial \tau \rightarrow W_{\sigma}$ extends to a map $\tau \rightarrow V_{\tau}$. We define $g: M[k] \rightarrow X$ so that it agrees with f on $M[k-1]$ and so that the restriction of g to τ is a choice of continuous extension $\tau \rightarrow V_{\tau}$ of $\left.f\right|_{\partial \tau}$.

We now choose the sets U_{σ}. Fix an $(n+1)$-simplex σ of K. If the k-skeleton of σ lies entirely in L, we choose any $U_{\sigma} \in \mathscr{U}$ satisfying $W_{\sigma} \subseteq U_{\sigma}$. Suppose there exists at least one k-simplex in σ not in L. Then whenever τ is a k-simplex of σ not in L, we have $W_{\sigma} \subseteq \operatorname{St}\left(x_{\tau}, \mathscr{W}\right) \subseteq V_{\tau}$. Fix a point $y_{\sigma} \in W_{\sigma}$. The assumption that $\mathscr{U} \leq_{*} \mathscr{V}$ implies that there exists $U_{\sigma} \in \mathscr{U}$ such that $\operatorname{St}\left(y_{\sigma}, \mathscr{V}\right) \subseteq U_{\sigma}$. In this case, we have $W_{\sigma} \subseteq V_{\tau} \subseteq U_{\sigma}$ whenever τ is a k-simplex of σ not in L.

Finally, we check that g satisfies the desired property. Again, fix an $(n+1)$ simplex σ of K. If τ is a k-simplex of σ not in L, our definition of g gives $g(\tau) \subseteq V_{\tau} \subseteq U_{\sigma}$. If τ^{\prime} is a k-simplex in $\sigma \cap L$, then $g\left(\tau^{\prime}\right)=f\left(\tau^{\prime}\right) \subseteq W_{\sigma} \subseteq U_{\sigma}$. Overall, this shows that $g(\sigma \cap M[k]) \subseteq U_{\sigma}$ for each $(n+1)$-simplex σ of K.

A direct, recursive application of the previous lemma is given in the following statement.

Lemma 4.8. Suppose there is a sequence of open covers

$$
\mathscr{U}=\mathscr{W}_{n} \leq_{*} \mathscr{V}_{n} \leq_{*}^{n-1} \mathscr{W}_{n-1} \leq_{*} \cdots \leq_{*}^{2} \mathscr{W}_{2} \leq_{*} \mathscr{V}_{2} \leq_{*}^{1} \mathscr{W}_{1} \leq_{*} \mathscr{V}_{1} \leq_{*}^{0} \mathscr{W}_{0}=\mathscr{W}
$$

and a map $f_{0}: M[0] \rightarrow X$ such that for every $(n+1)$-simplex σ of K, we have $f_{0}(\sigma \cap M[0]) \subseteq W$ for some $W \in \mathscr{W}$. Then there exists an extension $f_{n}: M[n] \rightarrow X$ of f_{0} such that for every $(n+1)$-simplex σ of K, we have $f_{n}(\partial \sigma) \subseteq U$ for some $U \in \mathscr{U}$.

5 A proof of Theorem 1.1

We apply the extension results of the previous section in the case where $K=$ $\operatorname{sd}^{m} \Delta_{n+1}$ for some $m \in \mathbb{N}$ and $L=\operatorname{sd}^{m} \partial \Delta_{n+1}$ so that $M[k]=L \cup K_{k}$ consists of the boundary of Δ_{n+1} and the k-simplices of $\operatorname{sd}^{m} \Delta_{n+1}$ not in the boundary. Note that $M[n]$ is the union of the boundaries of the $(n+1)$-simplices of $\operatorname{sd}^{m} \Delta_{n+1}$.

Lemma 5.1. Let $n \geqslant 1$. Suppose X is paracompact, Hausdorff, and $U V^{n-1}$. Then for every open cover \mathscr{U} of X, there exists $\left(\mathscr{V}, V_{0}\right) \in \Lambda$ such that $\operatorname{ker}\left(p_{\mathscr{V}}\right) \subseteq$ $\pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)$.

Proof. Suppose $\mathscr{U} \in O(X)$. Since X is paracompact, Hausdorff, and $U V^{n-1}$, we may apply Lemmas 4.2 and 4.6 to first find a sequence of refinements :

$$
\mathscr{U}=\mathscr{U}_{n} \leq_{*} \mathscr{V}_{n} \leq_{*}^{n-1} \mathscr{U}_{n-1} \leq_{*} \cdots \leq_{*}^{2} \mathscr{U}_{2} \leq_{*} \mathscr{V}_{2} \leq_{*}^{1} \mathscr{U}_{1} \leq_{*} \mathscr{V}_{1} \leq_{*}^{0} \mathscr{U}_{0}
$$

and then one last refinement $\mathscr{U}_{0} \leq_{*} \mathscr{V}_{0}=\mathscr{V}$. Let $V_{0} \in \mathscr{V}$ be any set containing x_{0} and recall that since X is paracompact Hausdorff $\left(\mathscr{V}, V_{0}\right) \in \Lambda$. We will show that $\operatorname{ker}\left(p_{\mathscr{V}} \#\right) \subseteq \pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)$. Note that $p_{\mathscr{V}}^{-1}(\operatorname{st}(V, N(\mathscr{V}))) \subseteq V$ for some choice of canonical map $p_{\mathcal{V}}$.

Suppose $[f] \in \operatorname{ker}\left(p_{\mathscr{V}} \#\right)$ is represented by a map $f:\left(\left|\partial \Delta_{n+1}\right|, d_{0}\right) \rightarrow\left(X, x_{0}\right)$. We will show that $[f] \in \pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)$. Then $p_{\mathscr{V}} \circ f:\left|\partial \Delta_{n+1}\right| \rightarrow|N(\mathscr{V})|$ is null-homotopic and extends to a map $h:\left|\Delta_{n+1}\right| \rightarrow|N(\mathscr{V})|$. Set $Y_{V}=$ $h^{-1}(\operatorname{st}(V, N(\mathscr{V})))$ so that $\mathscr{Y}=\left\{Y_{V} \mid V \in \mathscr{V}\right\}$ is an open cover of $\left|\Delta_{n+1}\right|$.

We find a particular simplicial approximation for h using the cover \mathscr{Y} [28, Theorem 16.1]: let λ be a Lebesgue number for \mathscr{Y} so that any subset of Δ_{n+1} of diameter less than λ lies in some element of \mathscr{Y}. Find $m \in \mathbb{N}$ such that each simplex in sd ${ }^{m} \Delta_{n+1}$ has diameter less than $\lambda / 2$. Thus the star st $\left(a, \operatorname{sd}^{m} \Delta_{n+1}\right)$ of each vertex a in $\operatorname{sd}^{m} \Delta_{n+1}$ lies in a set $Y_{V_{a}} \in \mathscr{Y}$ for some $V_{a} \in \mathscr{V}$. The assignment $a \mapsto V_{a}$ on vertices extends to a simplicial approximation $h^{\prime}: \operatorname{sd}^{m} \Delta_{n+1} \rightarrow N(\mathscr{V})$ of h, i.e. a simplicial map h^{\prime} such that

$$
h\left(\operatorname{st}\left(a, \operatorname{sd}^{m} \Delta_{n+1}\right)\right) \subseteq \operatorname{st}\left(h^{\prime}(a), N(\mathscr{V})\right)=\operatorname{st}\left(V_{a}, N(\mathscr{V})\right)
$$

for each vertex a [28, Lemma 14.1].
Let $K=\operatorname{sd}^{m} \Delta_{n+1}$ and $L=\operatorname{sd}^{m} \partial \Delta_{n+1}$ so that $M[k]=L \cup K_{k}$. First, we extend $f: L \rightarrow X$ to a map $f_{0}: M[0] \rightarrow X$. For each vertex a in K, pick a point $f_{0}(a) \in V_{a}$. In particular, if $a \in L$, take $f_{0}(a)=f(a)$. This choice is well defined since on boundary vertices $a \in L$ since we have $p_{\mathscr{V}} \circ f(a)=h(a) \in \operatorname{st}\left(V_{a},|N(\mathscr{V})|\right)$ and thus $f(a) \in p_{\mathscr{V}}^{-1}\left(\operatorname{st}\left(V_{a}, \mid N(\mathscr{V} \mid)\right)\right) \subseteq V_{a}$.

Note that h^{\prime} maps every simplex $\sigma=\left[a_{0}, a_{1}, \ldots, a_{k}\right]$ of K to the simplex of $N(\mathscr{V})$ spanned by $\left\{h^{\prime}\left(a_{i}\right) \mid 0 \leqslant i \leqslant k\right\}=\left\{V_{a_{i}} \mid 0 \leqslant i \leqslant k\right\}$. By definition of the nerve, we have $\bigcap\left\{V_{a_{i}} \mid 0 \leqslant i \leqslant k\right\} \neq \varnothing$. Pick a point $x_{\sigma} \in \bigcap\left\{V_{a_{i}} \mid 0 \leqslant i \leqslant k\right\}$.

By our initial choice of refinements, we have $\mathscr{U}_{0} \leq_{*} \mathscr{V}$. If $\sigma=\left[a_{0}, a_{1}, \ldots, a_{n+1}\right]$ is an $(n+1)$-simplex of K, then $\operatorname{St}\left(x_{\sigma}, \mathscr{V}\right) \subseteq U_{\sigma}$ for some $U_{\sigma} \in \mathscr{U}$. In particular $\left\{f_{0}\left(a_{i}\right) \mid 0 \leqslant i \leqslant n+1\right\} \subseteq \bigcup\left\{V_{a_{i}} \mid 0 \leqslant i \leqslant n+1\right\} \subseteq U_{\sigma}$. Thus f_{0} maps the 0 -skeleton of σ into U_{σ}. If $1 \leqslant k \leqslant n, \tau$ is a k-face of $\sigma \cap L$ with $a_{i} \in \tau$, then $p_{\mathscr{V}} \circ f_{0}(\operatorname{int}(\tau))=p_{\mathscr{V}} \circ f(\operatorname{int}(\tau))=h(\operatorname{int}(\tau)) \subseteq h\left(\operatorname{st}\left(a_{i}, K\right)\right) \subseteq \operatorname{st}\left(V_{a_{i}},|N(\mathscr{V})|\right)$. It follows that

$$
f_{0}(\tau) \subseteq p_{\mathscr{V}}^{-1}\left(\operatorname{st}\left(V_{a_{i}},|N(\mathscr{V})|\right)\right) \subseteq V_{a_{i}} \subseteq U_{\sigma}
$$

Thus for every n-simplex in $\sigma \cap L$, we have $f_{0}(\tau) \subseteq U_{\sigma}$. We conclude that for every $(n+1)$-simplex σ of K, we have $f_{0}(\sigma \cap M[0]) \subseteq U_{\sigma}$.

By our choice of sequence of refinements, we are precisely in the situation to apply Lemma 4.8. Doing so, we obtain an extension $f_{n}: M[n] \rightarrow X$ of f
such that for every $(n+1)$-simplex σ of K, we have $f_{n}(\partial \sigma) \subseteq \mathbf{U}_{\sigma}$ for some $\mathbf{U}_{\sigma} \in \mathscr{U}_{n}=\mathscr{U}$. By Lemma 3.6, we have $[f]=\left[\left.f_{n}\right|_{\partial \Delta_{n+1}}\right] \in \pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)$.

Finally, both inclusions have been established and provide a proof of our main result.

Proof of Theorem 1.1. The inclusion $\pi_{n}^{S p}\left(X, x_{0}\right) \subseteq \operatorname{ker}\left(\Psi_{n}\right)$ holds in general by Corollary 3.11. Under the given hypotheses, the inclusion $\operatorname{ker}\left(\Psi_{n}\right) \subseteq \pi_{n}^{S p}\left(X, x_{0}\right)$ follows from Lemma 5.1

When considering examples relevant to Theorem 1.1, it is helpful to compare π_{n}-shape injectivity with the following weaker property from [19].

Definition 5.2. We say a space X is n-homotopically Hausdorff at $x \in X$ if no non-trivial element of $\pi_{n}(X, x)$ has a representing map in every neighborhood of x. We say X is n-homotopically Hausdorff if it is n-homotopically Hausdorff at all of its points.

Clearly, π_{n}-shape injectivity $\Rightarrow n$-homotopically Hausdorff. The next example, which highlights the effectiveness of Theorem 1.1. shows the converse is not true even for $U V^{n-1}$ Peano continua.

Example 5.3. Fix $n \geqslant 2$ and let $\ell_{j}: S^{n} \rightarrow \mathbb{E}_{n}$ be the inclusion of the j-th sphere and define $f: \mathbb{E}_{n} \rightarrow \mathbb{E}_{n}$ to be the shift map given by $f \circ \ell_{j}=\ell_{j+1}$. Let $M_{f}=\mathbb{E}_{n} \times[0,1] / \sim,(x, 0) \sim(f(x), 1)$ be the mapping torus of f. We identify \mathbb{E}_{n} with the image of $\mathbb{E}_{n} \times\{0\}$ in M_{f} and take b_{0} to be the basepoint of M_{f}. Let $\alpha: I \rightarrow M_{f}$ be the loop where $\alpha(t)$ is the image of $\left(b_{0}, t\right)$. Then M_{f} is locally contractible at all points other than those in the image of α. Also, every point $\alpha(t)$ has a neighborhood that deformation retracts onto a homeomorphic copy of \mathbb{E}_{n}. Thus, since \mathbb{E}_{n} is $U V^{n-1}$, so is X. It follows from Theorem 1.1 that $\pi_{n}^{S p}\left(M_{f}, b_{0}\right)=\operatorname{ker}\left(\pi_{n}\left(M_{f}, b_{0}\right) \rightarrow \check{\pi}_{n}\left(M_{f}, b_{0}\right)\right)$. In particular, the Spanier group of M_{f} contains all elements $\left[\alpha^{k} * g\right]$ where $g: S^{n} \rightarrow \mathbb{E}_{n}$ is a based map and $k \in \mathbb{Z}$. Using the universal covering map $E \rightarrow M_{f}$ that "unwinds" α and the relation $[g]=[\alpha *(f \circ g)]$ in $\pi_{n}\left(M_{f}, b_{0}\right)$, it is not hard to show that these are, in fact, the only elements of the n-th Spanier group. Hence

$$
\operatorname{ker}\left(\pi_{n}\left(M_{f}, b_{0}\right) \rightarrow \check{\pi}_{n}\left(M_{f}, b_{0}\right)\right)=\left\{\left[\alpha^{k} * g\right] \mid[g] \in \pi_{n}\left(\mathbb{E}_{n}, b_{0}\right)\right\}
$$

which is an uncountable subgroup.
It follows from this description that, even though M_{f} is not π_{n}-shape injective, M_{f} is n-homotopically Hausdorff. Indeed, it suffices to check this at the points $\alpha(t), t \in I$. We give the argument for $\alpha(0)=b_{0}$, the other points are similar. If $0 \neq h \in \pi_{n}\left(M_{f}, b_{0}\right)$ has a representative in every neighborhood of b_{0} in M_{f}, then clearly $h \in \operatorname{ker}\left(\Psi_{n}\right)$. Hence, $h=\left[\alpha^{k} * g\right]$ for $[g] \in \pi_{n}\left(\mathbb{E}_{n}, b_{0}\right)$. Since M_{f} retracts onto the circle parameterized by α^{k}, the hypothesis on h can only hold if $k=0$. However, there is a basis of neighborhoods of b_{0} in M_{f} that deformation retract onto an open neighborhood of b_{0} in \mathbb{E}_{n}. Thus $[g]$ has a representative in every neighborhood of b_{0} in $\pi_{n}\left(\mathbb{E}_{n}, b_{0}\right)$, giving $h=[g] \in \operatorname{ker}\left(\pi_{n}\left(\mathbb{E}_{n}, b_{0}\right) \rightarrow \check{\pi}_{n}\left(\mathbb{E}_{n}, b_{0}\right)\right)=0$.

It is an important feature of Example 5.3 that M_{f} is not simply connected and has multiple points at which it is not semilocally π_{n}-trivial. This motivates the following application of Theorem 1.1, which identifies a partial converse of the implication π_{n}-shape injective $\Rightarrow n$-homotopically Hausdorff.

Corollary 5.4. Let $n \geqslant 2$ and X be a simply-connected, $U V^{n-1}$, compact Hausdorff space such that X fails to be semilocally n-trivial only at a single point $x \in X$. Then every element $g \in \operatorname{ker}\left(\Psi_{n}\right)$ is represented by a map with image in every neighborhood of x. In particular, if X is n-homotopically Hausdorff at x, then X is π_{n}-shape injective.

Proof. According to Remark 3.5, we may take x to be the basepoint of X. Let $0 \neq g \in \operatorname{ker}\left(\Psi_{n}\right)$. By Theorem 1.1, $g \in \pi_{n}^{S p}(X, x)$. Since X is compact Hausdorff, we may replace $O(X)$ by the cofinal sub-directed order $O_{F}(X)$ consisting of finite open covers \mathscr{U} of X with the property that there is a unique $W_{\mathscr{U}} \in \mathscr{U}$ with $x \in W_{\mathscr{U}}$. For each $\mathscr{U} \in O_{F}(X)$, we can write $g=\prod_{i=1}^{m_{\mathscr{U}}}\left[\alpha_{\mathscr{U}, i} * f_{\mathscr{U}, i}\right]$ where $f_{\mathscr{U}, i}: S^{n} \rightarrow U_{\mathscr{U}, i}$ is a non-null-homotopic map for some $U_{\mathscr{U}, i} \in \mathscr{U}$.

Let V be an open neighborhood of x. We check that g is represented by a map with image in V. Since X is $U V^{0}$ at x, there exists an open neighborhood V^{\prime} of x such that any two points of V^{\prime} may be connected by a path in V. Now, we fix $\mathscr{U}_{0} \in O_{F}(X)$ such that $W_{\mathscr{U}_{0}} \subseteq V^{\prime}$. Then $W_{\mathscr{V}} \subseteq V^{\prime}$ whenever $\mathscr{V} \in O_{F}(X)$ refines \mathscr{U}_{0}.

We claim that for sufficiently refined \mathscr{V}, all of the maps $f_{\mathscr{V}, i}$ have image in V^{\prime}. Suppose, to obtain a contradiction, there is a subset $T \subseteq\left\{\mathscr{V} \in O_{F}(X) \mid\right.$ $\left.\mathscr{U}_{0} \leq \mathscr{V}\right\}$, which is cofinal in $O_{F}(X)$ and such that for every $\mathscr{V} \in T$ there exists $i_{\mathscr{V}} \in\left\{1,2, \ldots, m_{\mathscr{V}}\right\}$ such that $\operatorname{Im}\left(f_{\mathscr{V}}, i_{\mathscr{V}}\right) \nsubseteq V^{\prime}$. Find $y_{\mathscr{V}, i_{\mathscr{V}}} \in S^{n}$ such that $f_{\mathscr{V}, i_{\mathscr{V}}}\left(y_{\mathscr{V}, i_{\mathscr{V}}}\right) \in U_{\mathscr{V}, i} \backslash V^{\prime} \subseteq U_{\mathscr{V}, i} \backslash W_{\mathscr{U}_{0}}$. Since X is compact, we may replace T with a cofinal directed subset so that the net $\left\{f_{\mathscr{V}, i_{\mathscr{V}}}\left(y_{\mathscr{V}, i \mathscr{V}}\right)\right\}_{\mathscr{V} \in T}$ converges to a point $y \in X$. Let Y be an open neighborhood of y in X. Find $\mathscr{V}_{0} \in O_{F}(X)$ such that there exists a unique neighborhood $V_{0} \in \mathscr{V}_{0}$ with $y \in V_{0}$ and which also satisfies $V_{0} \subseteq Y$. Then $U_{\mathscr{V}_{0}, i_{\mathscr{V}_{0}}}=V_{0} \subseteq Y$. Moreover, if $\mathscr{V} \in T$ refines \mathscr{V}_{0}, then $\operatorname{Im}\left(f_{\mathscr{V}}, i_{V}\right) \subseteq U_{\mathscr{V}}, i_{V} \subseteq V_{0} \subseteq Y$. However, for every $\mathscr{V}, f_{\mathscr{V}}, i_{V}$ is not null-homotopic in X. Thus, since Y represents an arbitrary neighborhood of y, X is not semilocally π_{n}-trivial at y. By assumption, we must have $x=y$. Since $\left\{f_{\mathscr{V}, i_{\mathscr{V}}}\left(y_{\mathscr{V}}, i_{\mathscr{V}}\right)\right\}_{\mathscr{V} \in T}$ converges to x, the same argument where V^{\prime} replaces Y shows that $\operatorname{Im}\left(f_{\mathscr{V}, i_{\mathscr{V}}}\right) \subseteq V^{\prime}$ for sufficiently refined $\mathscr{V} \in T$; a contradiction. Since the claim is proved, there exists $\mathscr{U}_{0} \leq \mathscr{U}_{1}$ in $O_{F}(X)$ such that whenever $\mathscr{U}_{1} \leq \mathscr{V}$, we have $\operatorname{Im}\left(f_{\mathscr{V}, i}\right) \subseteq V^{\prime}$ for all $i \in\left\{1,2, \ldots, m_{\mathscr{V}}\right\}$.

Fix a refinement \mathscr{V} of \mathscr{U}_{1} in $O_{F}(X)$. For all $i \in\left\{1,2, \ldots, m_{\mathscr{V}}\right\}$, we may find a path $\beta_{\mathscr{V}, i}: I \rightarrow V$ from x to $f_{\mathscr{V}, i}\left(d_{0}\right)$. Since g is simply connected, we have $\left[\alpha_{\mathscr{V}, i} * f_{\mathscr{U}, i}\right]=\left[\beta_{\mathscr{V}, i} * f_{\mathscr{U}, i}\right]$ for all i. Thus g is represented by $\prod_{i=1}^{m \mathscr{V}} \beta_{\mathscr{V}, i} * f_{\mathscr{V}, i}$, which has image in V.

Remark 5.5 (Topologies on homotopy groups). Given a group G and a collection of subgroups $\left\{N_{j} \mid j \in J\right\}$ of G such that for all $j, j^{\prime} \in J$, there exists $k \in J$ such that $N_{k} \subseteq N_{j} \cap N_{j^{\prime}}$, we can generate a topology on G by taking the set
$\left\{g N_{j} \mid j \in J, g \in G\right\}$ of left cosets as a basis. We can apply this to both the collection of Spanier subgroups $\pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)$ and the collection of kernels $\operatorname{ker}\left(p_{\mathscr{U} \#}\right)$ to define two natural topologies on $\pi_{n}\left(X, x_{0}\right)$.
(1) The Spanier topology on $\pi_{n}\left(X, x_{0}\right)$ is generated by the left cosets of Spanier groups $\pi_{n}\left(\mathscr{U}, x_{0}\right)$ for $\mathscr{U} \in O(X)$.
(2) The shape topology on $\pi_{n}\left(X, x_{0}\right)$ is generated by left cosets of the kernels $\operatorname{ker}\left(p_{\mathscr{U} \#}\right)$ where $\left(\mathscr{U}, U_{0}\right) \in \Lambda$. Equivalently, the shape topology is the initial topology with respect to the map Ψ_{n} where the groups $\pi_{n}\left(|N(\mathscr{U})|, U_{0}\right)$ are given the discrete topology and $\check{\pi}_{n}\left(X, x_{0}\right)$ is given the inverse limit topology.
Lemma 3.10 ensures the Spanier topology is always finer than the shape topology. Lemma 5.1 then implies that, whenever X is paracompact, Hausdorff, and $U V^{n-1}$, the two topologies agree. Moreover, $\pi_{n}\left(X, x_{0}\right)$ is Hausdorff in the shape topology if and only if X is π_{n}-shape injective.

6 When is Ψ_{n} an isomorphism?

It is a result of Kozlowski-Segal [23] that if X is paracompact Hausdorff and $U V^{n}$, then $\Psi_{n}: \pi_{n}(X, x) \rightarrow \check{\pi}_{n}(X, x)$ is an isomorphism. This result was first proved for compact metric spaces in [24]. The assumption that X is $U V^{n}$ assumes that small maps $S^{n} \rightarrow X$ may be contracted by small null-homotopies. However, if \mathbb{E}_{n} is the n-dimensional earring space, then the cone $C \mathbb{E}_{n}$ is $U V^{n-1}$ but not $U V^{n}$. However, $C \mathbb{E}_{n}$ is contractible and so Ψ_{n} is clearly an isomorphism of trivial groups. Certainly, many other examples in this range exist. Our Spanier group-based approach allows us to generalize Kozlowksi-Segal's theorem in a way that includes this example by removing the need for "small" homotopies in dimension n. For simplicity, we will sometimes suppress the pointedness of open covers and simply write \mathscr{U} for elements of Λ.

Lemma 6.1. Let $n \geqslant 1$. Suppose that X is paracompact, Hausdorff, and $U V^{n-1}$. If $\left(\left[f_{\mathscr{U}}\right]\right)_{\mathscr{U} \in \Lambda} \in \check{\pi}_{1}\left(X, x_{0}\right)$, then for every $\mathscr{U} \in \Lambda$, there exists $[g] \in$ $\pi_{n}(X, x)$ such that $\left(p_{\mathscr{U}}\right)_{\#}([g])=\left[f_{\mathscr{U}}\right]$.

Proof. With $\left(\mathscr{U}, U_{0}\right) \in \Lambda$ and $p_{\mathscr{U}}$ fixed, consider a representing map $f_{\mathscr{U}}$: $\left(\left|\partial \Delta_{n+1}\right|, d_{0}\right) \rightarrow\left(|N(\mathscr{U})|, U_{0}\right)$. Let $\mathscr{U}^{\prime}=\left\{p_{\mathscr{U}}^{-1}(\operatorname{st}(U,|N(\mathscr{U})|)) \mid U \in \mathscr{U}\right\}$. Since $p_{\mathscr{U},}^{-1}(\operatorname{st}(U,|N(\mathscr{U})|)) \subseteq U$ for all $U \in \mathscr{U}$, we have $\mathscr{U} \leq \mathscr{U}^{\prime}$. Applying Lemmas 4.2 and 4.6 we can choose the following sequence of refinements of \mathscr{U}^{\prime}. First, we choose a star refinement $\mathscr{U}^{\prime} \leq_{*_{*}} \mathscr{W}$ so that for every $W \in \mathscr{W}$, there exists $U^{\prime} \in \mathscr{U}^{\prime}$ such that $\operatorname{St}(W, \mathscr{W}) \subseteq U^{\prime}$. In this case, we can choose the projection $\operatorname{map} p_{\mathscr{U} \prime} \not \mathscr{W}^{\prime}:|N(\mathscr{W})| \rightarrow\left|N\left(\mathscr{U}^{\prime}\right)\right|$ so that if $p_{\mathscr{U}^{\prime} \mathscr{W}}(W)=U^{\prime}$ on vertices, then $\operatorname{St}(W, \mathscr{W}) \subseteq U^{\prime}$ in X. This choice will be important near the end of the proof.

To construct g, we must take further refinements. First, we choose a sequence of a refinements

$$
\mathscr{W}=\mathscr{W}_{n} \leq_{*} \mathscr{V}_{n} \leq_{*}^{n-1} \mathscr{W}_{n-1} \leq_{*} \cdots \leq_{*}^{2} \mathscr{W}_{2} \leq_{*} \mathscr{V}_{2} \leq_{*}^{1} \mathscr{W}_{1} \leq_{*} \mathscr{V}_{1} \leq_{*}^{0} \mathscr{W}_{0}
$$

followed by one last refinement $\mathscr{W}_{0} \leq_{*} \mathscr{V}_{0}=\mathscr{V}$. Let $V_{0} \in \mathscr{V}$ be any set containing x_{0} and recall that since X is paracompact Hausdorff $\left(\mathscr{V}, V_{0}\right) \in \Lambda$. For some choice of canonical map $p_{\mathscr{V}}$, we have $p_{\mathscr{V}}^{-1}(\operatorname{st}(V, N(\mathscr{V}))) \subseteq V$ for all $V \in \mathscr{V}$.

Recall that we have assumed the existence of a map $f_{\mathscr{V}}:\left(\partial \Delta_{n+1}, d_{0}\right) \rightarrow$ $\left(|N(\mathscr{V})|, V_{0}\right)$ such that $p_{\mathscr{U} \mathscr{V}}\left(\left[f_{\mathscr{V}}\right]\right)=\left[f_{\mathscr{U}}\right]$. Set $Y_{V}=f_{\mathscr{V}}^{-1}(\operatorname{st}(V, N(\mathscr{V})))$ so that $\mathscr{Y}=\left\{Y_{V} \mid V \in \mathscr{V}\right\}$ is an open cover of $\partial \Delta_{n+1}$. As before, we find a simplicial approximation for $f_{\mathscr{V}}$. Find $m \in \mathbb{N}$ such that the star st $\left(a, \operatorname{sd}^{m} \partial \Delta_{n+1}\right)$ of each vertex a in $\operatorname{sd}^{m} \partial \Delta_{n+1}$ lies in a set $Y_{V_{a}} \in \mathscr{Y}$ for some $V_{a} \in \mathscr{V}$. Since $f_{\mathscr{V}}\left(d_{0}\right)=V_{0}$, we may take $V_{d_{0}}=V_{0}$. The assignment $a \mapsto V_{a}$ on vertices extends to a simplicial approximation $f^{\prime}: \operatorname{sd}^{m} \partial \Delta_{n+1} \rightarrow|N(\mathscr{V})|$ of $f_{\mathscr{V}}$, i.e. a simplicial map f^{\prime} such that

$$
f_{\mathscr{V}}\left(\operatorname{st}\left(a, \operatorname{sd}^{m} \partial \Delta_{n+1}\right)\right) \subseteq \operatorname{st}\left(f^{\prime}(a),|N(\mathscr{V})|\right)=\operatorname{st}\left(V_{a},|N(\mathscr{V})|\right)
$$

for each vertex a.
We begin to define g with the constant map $\left\{d_{0}\right\} \rightarrow X$ sending d_{0} to x_{0}. In preparation for applications of Lemma 4.7. set $K=\operatorname{sd}^{m} \partial \Delta_{n+1}$ and $L=\left\{d_{0}\right\}$ so that $K[k]=K_{k}$. First, we define a map $g_{0}: M[0] \rightarrow X$ by picking, for each vertex $a \in K_{0}$, a point $g_{0}(a) \in V_{a}$. In particular, set $g_{0}\left(d_{0}\right)=x_{0}$. This choice is well defined since we have $p_{\mathscr{V}}\left(x_{0}\right)=V_{0} \in \operatorname{st}\left(V_{d_{0}}, N(\mathscr{V})\right)$ and thus $g_{0}\left(d_{0}\right)=x_{0} \in$ $p_{\mathscr{V}}^{-1}\left(\operatorname{st}\left(V_{d_{0}}, N(\mathscr{V})\right)\right) \subseteq V_{d_{0}}$. Note that f^{\prime} maps every simplex $\sigma=\left[a_{0}, a_{1}, \ldots, a_{k}\right]$ of K to the simplex of $|N(\mathscr{V})|$ spanned by $\left\{V_{a_{i}} \mid 0 \leqslant i \leqslant k\right\}$. By definition of the nerve, we have $\bigcap\left\{V_{a_{i}} \mid 0 \leqslant i \leqslant k\right\} \neq \varnothing$. Pick a point $x_{\sigma} \in \bigcap\left\{V_{a_{i}} \mid 0 \leqslant i \leqslant k\right\}$. By our initial choice of refinements, we have $\mathscr{U}_{0} \leq_{*} \mathscr{V}$. If $\sigma=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ is a n-simplex of K, then $\operatorname{St}\left(x_{\sigma}, \mathscr{V}\right) \subseteq U_{0, \sigma}$ for some $U_{0, \sigma} \in \mathscr{U}_{0}$. In particular $\left\{g_{0}\left(a_{i}\right) \mid 0 \leqslant i \leqslant n+1\right\} \subseteq \bigcup\left\{V_{a_{i}} \mid 0 \leqslant i \leqslant n\right\} \subseteq U_{0, \sigma}$. Thus g_{0} maps the 0 -skeleton of σ into $U_{0, \sigma}$. If $d_{0} \in \sigma$, then $g_{0}\left(d_{0}\right) \in p_{\mathscr{V}}^{-1}\left(\operatorname{st}\left(V_{d_{0}}, N(\mathscr{V})\right)\right) \subseteq V_{d_{0}} \subseteq$ $U_{0, \sigma}$. Hence, for every n-simplex σ of K, we have $g_{0}(\sigma \cap M[0]) \subseteq U_{0, \sigma}$.

We are now in the situation to recursively apply Lemma 4.7. This is similar to the application in the proof of Lemma 5.1 with the dimension $n+1$ shifted down by one so we omit the details. We obtain an extension $g: K=M[n] \rightarrow X$ of g_{0} such that for every n-simplex σ of K, we have $g(\sigma) \subseteq W_{\sigma}$ for some $W_{\sigma} \in \mathscr{W}=\mathscr{U}_{n}$.

With g defined, we seek show that $f_{\mathscr{U}} \simeq p_{\mathscr{U}} \circ g$. Since $f^{\prime} \simeq f_{\mathscr{V}}$ (by simplicial approximation), $p_{\mathscr{U} \mathscr{V}} \simeq p_{\mathscr{U} \mathscr{U}^{\prime}} \circ p_{\mathscr{U}^{\prime} \mathscr{W}} \circ p_{\mathscr{W} \mathscr{V}}$ (for any choice of projection maps), and $p_{\mathscr{U} \mathscr{V}} \circ f_{\mathscr{V}} \simeq f_{\mathscr{U}}$ (for any choice of projection $p_{\mathscr{U} V}$), it suffices to show that $p_{\mathscr{U} \mathscr{U}} \circ p_{\mathscr{U} \prime \mathscr{W}} \circ p_{\mathscr{W} \mathscr{V}} \circ f^{\prime} \simeq p_{\mathscr{U}} \circ g$. We do this by proving that the simplicial map $F=p_{\mathscr{U} \mathscr{U}^{\prime}} \circ p_{\mathscr{U}^{\prime} \mathscr{W}} \circ p_{\mathscr{W} \mathscr{V}} \circ f^{\prime}: K \rightarrow|N(\mathscr{U})|$ is a simplicial approximation for $p_{\mathscr{U}} \circ g$. Recall that this can be done by verifying the "starcondition" $p_{\mathscr{U}} \circ g(\operatorname{st}(a, K)) \subseteq \operatorname{st}(F(a),|N(\mathscr{U})|)$ for any vertex $a \in K$ [28, Ch. 2 $\S 14]$. Since $n \geqslant 1$, we have $\mathscr{W} \leq_{* *} \mathscr{V}$. Hence, just like our choice of $p_{\mathscr{U}^{\prime} \mathscr{W}}$, we may choose $p_{\mathscr{W} \mathscr{V}}$ so that whenever $p_{\mathscr{W} \mathscr{V}}(V)=W$, then $\operatorname{St}(V, \mathscr{V}) \subseteq W$. Also, we choose $p_{\mathscr{U}} \mathscr{U}^{\prime}$ to map $p_{\mathscr{U}}^{-1}(\operatorname{st}(U,|N(\mathscr{U})|)) \mapsto U$ on vertices.

Fix a vertex $a_{0} \in K$. To check the star-condition, we'll check that $p_{\mathscr{U}} \circ g(\sigma) \subseteq$ $\operatorname{st}\left(F\left(a_{0}\right),|N(\mathscr{U})|\right)$ for each n-simplex σ having a_{0} as a vertex. Pick an n-simplex $\sigma=\left[a_{0}, a_{1}, \ldots, a_{n}\right] \subseteq K$ having a_{0} as a vertex. Recall that $f^{\prime}\left(a_{i}\right)=V_{a_{i}}$ for
each i. Set $p_{\mathscr{W} \mathscr{V}}\left(V_{a_{i}}\right)=W_{i}$ and $p_{\mathscr{U}^{\prime} \mathscr{W}}\left(W_{i}\right)=p_{\mathscr{U}}^{-1}\left(\operatorname{st}\left(U_{i},|N(\mathscr{U})|\right)\right) \in \mathscr{U}^{\prime}$ for some $U_{i} \in \mathscr{U}$. Then $F\left(a_{i}\right)=U_{i}$ for all i. It now suffices to check that $p_{\mathscr{U}} \circ g(\sigma) \subseteq$ $\operatorname{st}\left(U_{0},|N(\mathscr{U})|\right)$. Recall that by our choice of $p_{\mathscr{U}}{ }^{\prime} \mathscr{W}$, we have $\operatorname{St}\left(W_{0}, \mathscr{W}\right) \subseteq$ $p_{\mathscr{U}}^{-1}\left(\operatorname{st}\left(U_{0},|N(\mathscr{U})|\right)\right)$. Thus it is enough to check that $g(\sigma) \subseteq \operatorname{St}\left(W_{0}, \mathscr{W}\right)$. By construction of g, we have $g(\sigma) \subseteq W_{\sigma}$ for some $W_{\sigma} \in \mathscr{W}$. Since $g\left(a_{0}\right) \in W_{0} \cap W_{\sigma}$, we have $g(\sigma) \subseteq W_{\sigma} \subseteq \operatorname{St}\left(W_{0}, \mathscr{W}\right)$, completing the proof.

Finally, we prove our secondary result, Theorem 1.2 .
Proof of Theorem 1.2. Since X is paracompact, Hausdorff, $U V^{n-1}$, we have $\pi_{n}^{S p}\left(X, x_{0}\right)=\operatorname{ker}\left(\Psi_{n}\right)$ by Theorem 1.1. Since X is semilocally π_{n}-trivial, we have $\pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)=1$ for some $\mathscr{U} \in \Lambda$. It follows that Ψ_{n} is injective. Moreover, by Lemma 5.1. we may find $\mathscr{V} \in \Lambda$ with $\operatorname{ker}\left(p_{\mathscr{V}}\right) \subseteq \pi_{n}^{S p}\left(\mathscr{U}, x_{0}\right)$. Thus $p_{\mathscr{V} \#}: \pi_{n}\left(X, x_{0}\right) \rightarrow \pi_{n}\left(|N(\mathscr{V})|, V_{0}\right)$ is injective. Let $\left(\left[f_{\mathscr{U}}\right]\right)_{\mathscr{U} \in \Lambda} \in \check{\pi}_{n}\left(X, x_{0}\right)$. By Lemma 6.1, for each $\mathscr{U} \in \Lambda$, there exists $\left[g_{\mathscr{U}}\right] \in \pi_{n}\left(X, x_{0}\right)$ such that $p_{\mathscr{U}}\left(\left[g_{\mathscr{U}}\right]\right)=\left[f_{\mathscr{U}}\right]$. If $\mathscr{V} \leq \mathscr{W}$, then we have

$$
p_{\mathscr{V} \#}\left(\left[g_{\mathscr{V}}\right]\right)=\left[f_{\mathscr{V}}\right]=p_{\mathscr{V} W} \#\left(\left[f_{\mathscr{W}}\right]\right)=p_{\mathscr{V} \mathscr{W}} \# \circ p_{\mathscr{W} \#}\left(\left[g_{\mathscr{W}}\right]\right)=p_{\mathscr{V}} \#\left(\left[g_{\mathscr{W}}\right]\right)
$$

Since $p_{\mathscr{V}} \#$ is injective, it follows that $\left[g_{\mathscr{W}}\right]=\left[g_{\mathscr{V}}\right]$ whenever $\mathscr{V} \leq \mathscr{W}$. Setting $[g]=\left[g_{\mathscr{V}}\right]$ gives $\Psi_{n}([g])=\left(\left[f_{\mathscr{U}}\right]\right)_{\mathscr{U} \in \Lambda}$. Hence, Ψ_{n} is surjective.

7 Examples

Example 7.1. Fix $n \geqslant 2$. When X is a metrizable $U V^{n-1}$ space, the cone $C X$ and unreduced suspension $S X$ are $U V^{n-1}$ and semilocally π_{n}-trivial but need not be $U V^{n}$. This occurs in the case $X=\mathbb{E}_{n}$ or if $X=Y \vee \mathbb{E}_{n}$ where Y is a CW-complex. In such cases, $\Psi_{n}: \pi_{n}(S X) \rightarrow \check{\pi}_{n}(S X)$ is an isomorphism. One point unions of such cones and suspensions, e.g. $C X \vee C Y$ or $C X \vee S Y$ also meet the hypotheses of Theorem 1.2 (checking this is fairly technical [3]) but need not be $U V^{n}$.

Example 7.2. The converse of Theorem 1.2 does not hold. For $n \geqslant 2, \mathbb{E}_{n}$ is $U V^{n-1}$ but is not semilocally π_{n}-trivial at the wedgepoint x_{0}. However, Ψ_{n} : $\pi_{n}\left(\mathbb{E}_{n}, x_{0}\right) \rightarrow \check{\pi}_{n}\left(\mathbb{E}_{n}, x_{0}\right)$ is an isomorphism where both groups are canonically isomorphic to $\mathbb{Z}^{\mathbb{N}}[12]$. Additionally, for the infinite direct product $\prod_{\mathbb{N}} S^{n}$, $\Psi_{k}: \pi_{k}\left(\prod_{\mathbb{N}} S^{n}, x_{0}\right) \rightarrow \check{\pi}_{k}\left(\prod_{\mathbb{N}} S^{n}, x_{0}\right)$ is an isomorphism for all $k \geqslant 1$ even though $\prod_{\mathbb{N}} S^{n}$ is not $U V^{k-1}$ when $k-1 \geqslant n$.

Example 7.3. We can also modify the mapping torus M_{f} from Example 5.3 so that Ψ_{n} becomes an isomorphism (recall that $n \geqslant 2$ is fixed). Let $X=$ $M_{f} \cup C \mathbb{E}_{n}$ be the mapping cone of the inclusion $\mathbb{E}_{n} \rightarrow M_{f}$. For the same reason M_{f} is $U V^{n-1}$, the space X is $U V^{n-1}$. Moreover, if U is a neighborhood of $\alpha(t)$ that deformation retracts onto a homeomorphic copy of \mathbb{E}_{n}, then any map $S^{n} \rightarrow U$ may be freely homotoped "around" the torus and into the cone. It follows that X is semilocally π_{n}-trivial. We conclude from Theorem 1.2 that $\Psi_{n}: \pi_{n}(X) \rightarrow \check{\pi}_{n}(X)$ is an isomorphism. Since sufficiently fine covers of X
always give nerves homotopy equivalent to $S^{1} \vee S^{n+1}$, we have $\check{\pi}_{n}\left(X, b_{0}\right)=0$. Thus $\pi_{n}(X)=0$.

Example 7.4. Let $n \geqslant 2$ and $X=\mathbb{E}_{1} \vee S^{n}$ (see Figure 2). Note that because \mathbb{E}_{1} is aspherical [6, 8], X is semilocally π_{n}-trivial. However, X is not $U V^{1}$ because it has \mathbb{E}_{1} as a retract. It is shown in [3] that $\pi_{n}(X) \cong \bigoplus_{\pi_{1}\left(\mathbb{E}_{1}\right)} \pi_{n}\left(S^{n}\right) \cong \bigoplus_{\pi_{1}\left(\mathbb{E}_{1}\right)} \mathbb{Z}$ and that $\Psi_{n}: \pi_{n}(X) \rightarrow \check{\pi}_{n}(X)$ is injective. In particular, we may represent elements of $\pi_{n}(X)$ as finite-support sums $\sum_{\beta \in \pi_{1}\left(\mathbb{E}_{1}\right)} m_{\beta}$ where $m_{\beta} \in \mathbb{Z}$. We show that Ψ_{n} is not surjective.

Identify $\pi_{1}(X)$ with $\pi_{1}\left(\mathbb{E}_{1}\right)$ and recall from [9] that we can represent the elements of $\pi_{1}\left(\mathbb{E}_{1}\right)$ as countably infinite reduced words indexed by a countable linear order (with a countable alphabet $\beta_{1}, \beta_{2}, \beta_{3}, \ldots$). Here β_{j} is represented by a loop $S^{1} \rightarrow \mathbb{E}_{1}$ going once around the j-th circle. Let X_{j} be the union of S^{n} and the largest j circles of \mathbb{E}_{1} so that $X=\lim _{\leftrightarrows} X_{j}$. Identify $\pi_{1}\left(X_{j}\right)$ with the free group F_{j} on generators $\beta_{1}, \beta_{2}, \ldots \beta_{j}$ and note that $\pi_{n}\left(X_{j}\right) \cong \bigoplus_{F_{j}} \mathbb{Z}$. Thus we may view an element of $\pi_{n}\left(X_{j}\right)$ as a finite-support sums $\sum_{w \in F_{j}} m_{w}$ of integers indexed over reduced words in F_{j}. Let $d_{j+1, j}: F_{j+1} \rightarrow F_{j}$ be the homomorphism that deletes the letter β_{j+1}. Consider the inverse limit $\check{\pi}_{1}(X)=\lim _{j}\left(F_{j}, d_{j+1, j}\right)$. The map $X \rightarrow X_{j}$ that collapses all but the first j-circles of \mathbb{E}_{1} induces a homomorphism $d_{j}: \pi_{1}(X) \rightarrow F_{j}$. There is a canonical homomorphism $\phi:$ $\pi_{1}(X) \rightarrow \check{\pi}_{1}(X)=\lim _{\rightleftarrows}\left(F_{j}, d_{j+1, j}\right)$ given by $\phi(\beta)=\left(d_{1}(\beta), d_{2}(\beta), \ldots\right)$, which is known to be injective [27] but not surjective. For example, if $x_{k}=\prod_{j=1}^{k}\left[\beta_{1}, \beta_{j}\right]$, then $\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)$ is an element of $\check{\pi}_{1}(X)$ not in the image of ϕ.

The bonding map $b_{j+1, j}: \pi_{n}\left(X_{j+1}\right) \rightarrow \pi_{n}\left(X_{j}\right)$ sends a sum $\sum_{w \in F_{j+1}} m_{w}$ to $\sum_{v \in F_{j}} p_{v}$ where $p_{v}=\sum_{d_{j+1, j}(w)=v} m_{w}$. Similarly, projection map $b_{j}: \pi_{n}(X) \rightarrow$ $\pi_{n}\left(X_{j}\right)$ sends the sum $\sum_{\beta \in \pi_{1}(X)} n_{\beta}$ to $\sum_{v \in F_{j}} m_{v}$ where $m_{v}=\sum_{d_{j}(\beta)=v} m_{\beta}$. Let $y_{j} \in \pi_{n}(X)$ be the sum whose only non-zero coefficient is the x_{j}-coefficient, which is 1 . Since $d_{j+1, j}\left(x_{j+1}\right)=x_{j}$, it's clear that $\left(y_{1}, y_{2}, y_{3}, \ldots\right) \in \check{\pi}_{n}(X)$. Suppose $\Psi_{n}\left(\sum_{\beta} m_{\beta}\right)=\left(y_{1}, y_{2}, y_{3}, \ldots\right)$. Writing $\sum_{\beta} m_{\beta}$ as a finite sum $\sum_{i=1}^{r} m_{\beta_{i}}$ for non-zero $m_{\beta_{i}}$, we must have $\sum_{d_{j}\left(\beta_{i}\right)=x_{j}} m_{\beta_{i}}=1$ for all $j \in \mathbb{N}$. Since there are only finitely many β_{i} involved, there must exist at least one i for which $d_{j}\left(\beta_{i}\right)=x_{j}$ for infinitely many j. For such i, we have $\phi\left(\beta_{i}\right)=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$, which, as mentioned above, is impossible. Hence Ψ_{n} is not surjective.

Figure 2: The one point union $\mathbb{E}_{1} \vee S^{2}$.
The previous example shows why we cannot do away with the $U V^{n-1}$ hypothesis in Theorem 1.2. Since we weakened the hypothesis from [23] in dimension n and no hypothesis in dimension n is required for Theorem 1.1, one might suspect that we might be able to do away with the dimension n hypothesis completely. The next example, which is a higher analogue of the harmonic archipelago [2, 7, 20] shows why this is not possible.

Example 7.5. Let $n \geqslant 2$ and $\ell_{j}: S^{n} \rightarrow \mathbb{E}_{n}$ be the inclusion of the j-th n-sphere in \mathbb{E}_{n}. Let X be the space obtained by attaching $(n+1)$-cells to \mathbb{E}_{n} using the attaching maps ℓ_{j}. Since \mathbb{E}^{n} is $U V^{n-1}$ it follows easily that X is $U V^{n-1}$. However, X is not semilocally π_{n}-trivial at the wedgepoint x_{0} of \mathbb{E}^{n}. Indeed, the infinite concatenation maps $\prod_{j \geqslant k} \ell_{j}=\ell_{k} \cdot \ell_{k+1} \cdots$ are not null-homotopic (using a standard argument that works for the harmonic archipelago) but are all homotopic to each other. Thus $\pi_{n}\left(X, x_{0}\right) \neq 0$. However for sufficiently fine open covers $\mathscr{U} \in O(X),|N(\mathscr{U})|$ is homotopy equivalent to a wedge of $(n+1)$ spheres and is therefore n-connected. Thus $\check{\pi}_{n}\left(X, b_{0}\right)=0$. Thus, despite X being $U V^{n-1}, \Psi_{n}$ is not an isomorphism. In fact, $\pi_{n}\left(X, x_{0}\right)=\pi_{n}^{S p}\left(X, x_{0}\right)=$ $\operatorname{ker}\left(\Psi_{n}\right)$. The reader might also note that since \mathbb{E}^{n-1} is $(n-1)$-connected and $\pi_{n}\left(\mathbb{E}_{n}\right) \cong H_{n}\left(\mathbb{E}_{n}\right) \cong \mathbb{Z}^{\mathbb{N}}, X$ will also be $(n-1)$-connected. A MeyerVietoris Sequence argument similar to that in [20] can then be used to show $\pi_{n}\left(X, x_{0}\right) \cong H_{n}(X) \cong \mathbb{Z}^{\mathbb{N}} / \oplus_{\mathbb{N}} \mathbb{Z}$.

References

[1] A. Akbar Bahredar, N. Kouhestani, H. Passandideh, The n-dimensional Spanier group, Filomat 35 (2021), no. 9, 3169-3182.
[2] W. A. Bogley, A. J. Sieradski, Universal path spaces, Unpublished Preprint. 1998.
[3] J. Brazas, Sequential n-connectedness and infinite factorization in higher homotopy groups, Preprint. (2021) arXiv:2103.13456.
[4] J. Brazas, P. Fabel, Thick Spanier groups and the first shape group, Rocky Mountain J. Math. 44 (2014) 1415-1444.
[5] J.W. Cannon, G.R. Conner, On the fundamental groups of one-dimensional spaces, Topology Appl. 153 (2006) 2648-2672.
[6] J.W. Cannon, G.R. Conner, A. Zastrow, One-dimensional sets and planar sets are aspherical, Topology Appl. 120 (2002) 23-45.
[7] G.R. Conner, W. Hojka, M. Meilstrup, Archipelago Groups, Proc. Amer. Math. Soc. 143 (2015), no. 11, 4973-4988.
[8] M.L. Curtis, M.K. Fort, Jr., Homotopy groups of one-dimensional spaces, Proc. Amer. Math. Soc. 8 (1957), no. 3, 577-579.
[9] K. Eda, Free σ-products and noncommutatively slender groups, J. of Algebra 148 (1992) 243-263.
[10] K. Eda, K. Kawamura, The Surjectivity of the canonical homomorphism from singular homology to Cech Homology, Proc. Amer. Math. Soc. 128 (1999), no. 5, 1487-1495.
[11] K. Eda, K. Kawamura, The fundamental groups of one-dimensional spaces, Topology Appl. 87 (1998) 163-172.
[12] K. Eda, K. Kawamura, Homotopy and homology groups of the n dimensional Hawaiian earring, Fund. Math. 165 (2000) 17-28.
[13] K. Eda, K. Kawamura, The asphericty of one-point unions of cones, Topology Proc. 36 (2010) 63-75.
[14] K. Eda, U.H. Karmov, D. Repovš, A. Zastrow, On Snake cones, Alternating cones and related constructions, Glasnik Matematicki 48 (2013), no. 1, 115135.
[15] H. Fischer, C. Guilbault, On the fundamental groups of trees of manifolds, Pacific J. Math. 221 (2005) 49-79.
[16] H. Fischer, D. Repovš, Z. Virk, and A. Zastrow, On semilocally simplyconnected spaces, Topology Appl. 158 (2011) 397-408.
[17] H. Fischer, A. Zastrow, The fundamental groups of subsets of closed surfaces inject into their first shape groups, Algebraic and Geometric Topology 5 (2005) 1655-1676.
[18] H. Fischer, A. Zastrow, Generalized universal covering spaces and the shape group, Fund. Math. 197 (2007) 167-196.
[19] H. Ghane, Z. Hamed, n-Homotopically Hausdorff spaces, in: The 5th Seminar on Geometry and Topology Proceeding, 2009
[20] U.H. Karimov, D. Repovš, On the homology of the harmonic archipelago, Central Europena J. Math. 10 (2012), no. 3, 863-872.
[21] K. Kawamura, Low dimensional homotopy groups of suspensions of the Hawaiian earring, Colloq. Math. 96 (2003) no. 1 27-39.
[22] G. Kozlowski, G. Segal, Locally well-behaved paracompact in shape theory, Fund. Math. 95 (1977) 55-71.
[23] G. Kozlowski, G. Segal, Local behavior and the Vietoris and Whitehead theorems in shape theory, Fund. Math. 99 (1978) 213-225.
[24] K. Kuperberg, Two Vietor-is-type isomorphism theorems in Borsuk's theory of shape, concerning the Vietoris-Čech homology and Borsuk's fundamental groups, in: Studies in Topology (Charlotte, NC, 1974), Academic Press, 1975, 285-313.
[25] S. Mardešić, Comparison of singular and Čech homology in locally connected spaces, Michigan J. Math. 6 (1959), 151-166.
[26] S. Mardešić, J. Segal, Shape theory, North-Holland Publishing Company, 1982.
[27] J.W. Morgan, I.A. Morrison, A van Kampen theorem for weak joins. Proc. London Math. Soc. 53 (1986), no. 3, 562-576.
[28] J.R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Co., Menlo Park, CA., 1984.
[29] K. Sakai, Geometric aspects of general topology, Springer Japan, Tokyo, 2013.
[30] E. Spanier, Algebraic Topology, McGraw-Hill, 1966.
[31] A.H. Stone, Paracompactness and Product Spaces, Bull Amer. Math. Soc. 54 (1948) 977-982.
[32] Z. Virk, 1-Dimensional intrinsic persistence of geodesic spaces, J. Topology and Analysis 12 (2020), no. 1, 169-207.
[33] S. Willard, General Topology, Dover Publications, 2004.

