Elements of higher homotopy groups undetectable by polyhedral approximation

John K. Aceti, Jeremy Brazas

August 16, 2022

Abstract

When non-trivial local structures are present in a topological space X, a common approach to characterizing the isomorphism type of the *n*-th homotopy group $\pi_n(X, x_0)$ is to consider the image of $\pi_n(X, x_0)$ in the *n*-th Čech homotopy group $\check{\pi}_n(X, x_0)$ under the canonical homomorphism $\Psi_n : \pi_n(X, x_0) \to \check{\pi}_n(X, x_0)$. The subgroup ker (Ψ_n) is the obstruction to this tactic as it consists of precisely those elements of $\pi_n(X, x_0)$, which cannot be detected by polyhedral approximations to X. In this paper, we use higher dimensional analogues of Spanier groups to characterize ker (Ψ_n) . In particular, we prove that if X is paracompact, Hausdorff, and UV^{n-1} , then ker (Ψ_n) is equal to the *n*-th Spanier group of X. We also use the perspective of higher Spanier groups to generalize a theorem of Kozlowski-Segal, which gives conditions ensuring that Ψ_n is an isomorphism.

1 Introduction

When non-trivial local structures are present in a topological space, a common approach to characterizing the isomorphism type of $\pi_n(X, x_0)$ is to consider the image of $\pi_n(X, x_0)$ in the *n*-th Čech (shape) homotopy group $\check{\pi}_n(X, x_0)$ under the canonical homomorphism $\Psi_n : \pi_n(X, x_0) \to \check{\pi}_n(X, x_0)$. The *n*-th shape kernel ker(Ψ_n) is the obstruction to this tactic as it consists of precisely those elements of $\pi_n(X, x_0)$, which cannot be detected by polyhedral approximations to X. This method has proved successful in many situations for both the fundamental group [5, 11, 15, 17] and higher homotopy groups [3, 12, 13, 14, 21]. In this paper, we study the map Ψ_n and give a characterization the *n*-th shape kernel in terms of higher-dimensional analogues of Spanier groups.

The subgroups of fundamental groups, which are now commonly referred to as "Spanier groups," first appeared in E.H. Spanier's unique approach to covering space theory [30]. If \mathscr{U} is an open cover of a topological space X and $x_0 \in X$, then the *Spanier group with respect to* \mathscr{U} is the subgroup $\pi_1^{Sp}(\mathscr{U}, x_0)$ of $\pi_1(X, x_0)$ generated by path-conjugates $[\alpha][\gamma][\alpha]^{-1}$ where α is a path starting at x_0 and γ is a loop based at $\alpha(1)$ with image in some element of \mathscr{U} . These subgroups are particularly relevant to covering space theory since, when X is locally path-connected, a subgroup $H \leq \pi_1(X, x_0)$ corresponds to a covering map $p: (Y, y_0) \to (X, x_0)$ if and only if $\pi_1^{Sp}(\mathscr{U}, x_0) \leq H$ for some open cover \mathscr{U} [30, 2.5.12]. The intersection $\pi_1^{Sp}(X, x_0) = \bigcap_{\mathscr{U}} \pi_1^{Sp}(\mathscr{U}, x_0)$ is called the *Spanier group of* (X, x_0) [16]. The inclusion $\pi_1^{Sp}(X, x_0) \subseteq \ker(\Psi_1)$ always holds [18, Prop. 4.8]. It is proved in [4, Theorem 6.1] that $\pi_1^{Sp}(X, x_0) = \ker(\Psi_1)$ whenever X is paracompact Hausdorff and locally path connected. The upshot of this equality is having a description of level-wise generators (for each open cover \mathscr{U}) whereas there may be no readily available generating set for the kernel of a homomorphism induced by a canonical map from X to the nerve $|N(\mathscr{U})|$. Indeed, 1-dimensional Spanier groups have proved useful in persistence theory [32]. Since much of applied topology is based on a geometric refinement of polyhedral approximation from shape theory, there seems potential for higher dimensional analogues to be useful as well.

Higher dimensional analogues of Spanier groups recently appeared in [1] and are defined in a similar way: $\pi_n^{Sp}(\mathscr{U}, x_0)$ is the subgroup of $\pi_n(X, x_0)$ consisting of homotopy classes of path-conjugates $\alpha * f$ where α is a path starting at x_0 and $f: S^n \to X$ is based at $\alpha(1)$ with image in some element of \mathscr{U} . Then $\pi_n^{Sp}(X, x_0)$ is the intersection of these subgroups. In this paper, we prove a higher-dimensional analogue of the 1-dimensional equality $\pi_1^{Sp}(X, x_0) = \ker(\Psi_1)$ from [4].

A space X is UV^n if for every neighborhood U of a point $x \in X$, there is a neighborhood V of x in U such that every map $f : S^k \to V$, $0 \leq k \leq n$ is null-homotopic in U, c.f. [29]. When a space is UV^n "small" maps on spheres of dimension $\leq n$ contract by null-homotopies of relatively the same size. Certainly, every locally n-connected space is UV^n . However, when $n \geq 1$, the converse is not true even for metrizable spaces. Our main result is the following.

Theorem 1.1. Let $n \ge 1$ and $x_0 \in X$. If X is paracompact, Hausdorff, and UV^{n-1} , then $\pi_n^{Sp}(X, x_0) = \ker(\Psi_n)$.

This result confirms that higher Spanier groups, like their 1-dimensional counterparts, often identify precisely those elements of $\pi_n(X, x_0)$ which can be detected by polyhedral approximations to X. A first countable path-connected space is UV^0 if and only if it is locally path connected. Hence, in dimension n = 1, Theorem 1.1 only expands [4, Theorem 6.1] to some non-first countable spaces.

Regarding the proof of Theorem 1.1, the inclusion $\pi_n^{Sp}(X, x_0) \subseteq \ker(\Psi_n)$ was first proved for n = 1 in [18, Prop. 4.8] and for $n \ge 2$ in [1, Theorem 4.14]. We include this proof for the sake of completion (Lemma 3.11). The proof of the inclusion $\ker(\Psi_n) \subseteq \pi_n^{Sp}(X, x_0)$ appears in Section 5 and is more intricate, requiring a carefully chosen sequence of open cover refinements using the UV^{n-1} property. These refinements allow one to recursively extend maps on simplicial complexes skeleton-wise. These extension methods, established in Section 4, are similar to methods found in [22, 23]. We also put these extension methods to work in Section 6 where we identify conditions that imply Ψ_n is an isomorphism. In [23], Kozlowski-Segal prove that if X is paracompact Hausdorff and UV^n , then Ψ_n is an isomorphism. In [18], Fischer and Zastrow generalize this result in dimension n = 1 by replacing " UV^1 " with "locally path connected and semilocally simply connected." Similar, to the approach of Fischer-Zastrow, our use of Spanier groups shows that the existence of *small* null-homotopies of small maps $S^n \to X$ (specifically in dimension n) is not necessary to prove that Ψ_n is injective. We say a space Xis *semilocally* π_n -trivial if for every $x \in X$ there exists an open neighborhood U of x such that every map $S^n \to U$ is null-homotopic in X. This definition is independent of lower dimensions but certainly $UV^n \Rightarrow (UV^{n-1}$ and semilocally π_n -trivial). Our secondary result is the following.

Theorem 1.2. Let $n \ge 1$ and $x_0 \in X$. If X is paracompact, Hausdorff, UV^{n-1} , and semilocally π_n -trivial, then $\Psi_n : \pi_n(X, x_0) \to \check{\pi}_n(X, x_0)$ is an isomorphism.

The hypotheses in Theorem 1.2 are the homotopical versions of the hypotheses used in [25] to ensure that the canonical homomorphism $\varphi_* : H_n(X) \rightarrow \check{H}_n(X)$ is an isomorphism, see also [10] regarding the surjectivity of φ_* . Although we have only weakened the hypothesis of the Kozlowksi-Segal result in dimension *n*, Theorem 1.2 formally generalizes the results of both [18] and [22] and does apply to some spaces of interest, namely spaces involving cones over (or attached to) wild spaces (see Examples 7.1 and 7.3). Examples also show that Ψ_n can fail to be an isomorphism if X is semilocally π_n -trivial but not UV^{n-1} (Example 7.4) or if X is UV^{n-1} but not semilocally π_n -trivial (Example 7.5).

2 Preliminaries and Notation

Throughout this paper, X is assumed to be a path-connected topological space with basepoint x_0 . The unit interval is denoted I and S^n is the unit n-sphere with basepoint $d_0 = (1, 0, ..., 0)$. The n-th homotopy group of (X, x_0) is denoted $\pi_n(X, x_0)$. If $f : (X, x_0) \to (Y, y_0)$ is a based map, then $f_{\#} : \pi_n(X, x_0) \to \pi_n(Y, y_0)$ is the induced homomorphism.

A path in a space X is a map $\alpha : I \to X$ from the unit interval. The reverse of α is the path given by $\alpha^{-}(t) = \alpha(1-t)$ and the concatenation of two paths α, β with $\alpha(1) = \beta(0)$ is denoted $\alpha \cdot \beta$. Similarly, if $f, g : S^n \to X$ are maps based at $x \in X$, then $f \cdot g$ denotes the usual *n*-loop concatenation and f^{-} denotes the reverse map. We may write $\prod_{i=1}^{m} f_i$ to denote an *m*-fold concatenation $f_1 \cdot f_2 \cdot \cdots \cdot f_m$.

2.1 Simplicial complexes

We make heavy use of standard notation and theory of abstract and geometric simplicial complexes, which can be found in texts such as [26] and [28]. We briefly recall relevant notation.

If K is an abstract or geometric simplicial complex and $r \ge 0$ is an integer, K_r denotes the r-skeleton of K. If K is abstract, |K| denotes the geometric realization of K. If K is geometric, then $\operatorname{sd}^m K$ denotes the m-th barycentric subdivision of K and if v is a vertex of K, then $\operatorname{st}(v, K)$ denotes the open star of the vertex v. When $L \subseteq K$ is a subcomplex, $\operatorname{sd}^m L$ is a subcomplex of $\operatorname{sd}^m K$. If $\sigma = \{v_0, v_1, \ldots, v_r\}$ is an r-simplex of K, then $[v_0, v_1, \ldots, v_r]$ denotes the r-simplex of |K| with the indicated orientation.

We frequently make use of the standard *n*-simplex Δ_n in \mathbb{R}^n spanned by the origin d_0 and standard unit vectors. Since the boundary $\partial \Delta_n = \Delta_n = (\Delta_n)_{n-1}$ is homeomorphic to S^{n-1} , we fix a based homeomorphism $\partial \Delta_n \cong S^{n-1}$ that allows us to represent elements of $\pi_n(X, x_0)$ by maps $(\partial \Delta_{n+1}, d_0) \to (X, x_0)$.

2.2 The Cech expansion and shape homotopy groups

We now recall the construction of the first shape homotopy group $\check{\pi}_1(X, x_0)$ via the Čech expansion. For more details, see [26].

Let $\mathcal{O}(X)$ be the set of open covers of X direct by refinement; we write $\mathscr{U} \leq \mathscr{V}$ when \mathscr{V} refines \mathscr{U} . Similarly, let $\mathcal{O}(X, x_0)$ be the set of open covers with a distinguished element containing the basepoint, i.e. the set of pairs (\mathscr{U}, U_0) where $\mathscr{U} \in \mathcal{O}(X), U_0 \in \mathscr{U}$, and $x_0 \in U_0$. We say (\mathscr{V}, V_0) refines (\mathscr{U}, U_0) if $\mathscr{U} \leq \mathscr{V}$ and $V_0 \subseteq U_0$.

The nerve of a cover $(\mathscr{U}, U_0) \in \mathcal{O}(X, x_0)$ is the abstract simplicial complex $N(\mathscr{U})$ whose vertex set is $N(\mathscr{U})_0 = \mathscr{U}$ and vertices $A_0, ..., A_n \in \mathscr{U}$ span an n-simplex if $\bigcap_{i=0}^n A_i \neq \emptyset$. The vertex U_0 is taken to be the basepoint of the geometric realization $|N(\mathscr{U})|$. Whenever (\mathscr{V}, V_0) refines (\mathscr{U}, U_0) , we can construct a simplicial map $p_{\mathscr{U}\mathscr{V}} : N(\mathscr{V}) \to N(\mathscr{U})$, called a *projection*, given by sending a vertex $V \in N(\mathscr{V})$ to a vertex $U \in \mathscr{U}$ such that $V \subseteq U$. In particular, V_0 must be sent to U_0 . Any such assignment of vertices extends linearly to a simplicial map. Moreover, the induced map $|p_{\mathscr{U}\mathscr{V}}| : |N(\mathscr{V})| \to |N(\mathscr{U})|$ is unique up to based homotopy. Thus the homomorphism $p_{\mathscr{U}\mathscr{V}\#} : \pi_1(|N(\mathscr{V})|, V_0) \to \pi_1(|N(\mathscr{U})|, U_0)$ induced on fundamental groups is (up to coherent isomorphism) independent of the choice of simplicial map.

Recall that an open cover \mathscr{U} of X is normal if it admits a partition of unity subordinated to \mathscr{U} . Let Λ be the subset of $\mathcal{O}(X, x_0)$ (also directed by refinement) consisting of pairs (\mathscr{U}, U_0) where \mathscr{U} is a normal open cover of Xand such that there is a partition of unity $\{\phi_U\}_{U \in \mathscr{U}}$ subordinated to \mathscr{U} with $\phi_{U_0}(x_0) = 1$. It is well-known that every open cover of a paracompact Hausdorff space X is normal. Moreover, if $(\mathscr{U}, U_0) \in \mathcal{O}(X, x_0)$, it is easy to refine (\mathscr{U}, U_0) to a cover (\mathscr{V}, V_0) such that V_0 is the only element of \mathscr{V} containing x_0 and therefore $(\mathscr{V}, V_0) \in \Lambda$. Thus, for paracompact Hausdorff X, Λ is cofinal in $\mathcal{O}(X, x_0)$.

The n-th shape homotopy group is the inverse limit

$$\check{\pi}_n(X, x_0) = \lim_{\mathcal{U}} \left(\pi_n(|N(\mathscr{U})|, U_0), p_{\mathscr{U}\mathscr{V}\#}, \Lambda \right).$$

This group is also referred to as the n-th Čech homotopy group.

Given an open cover $(\mathscr{U}, U_0) \in \mathcal{O}(X, x_0)$, a map $p_{\mathscr{U}} : X \to |N(\mathscr{U})|$ is a *(based) canonical map* if $p_{\mathscr{U}}^{-1}(\operatorname{st}(U, N(\mathscr{U}))) \subseteq U$ for each $U \in \mathscr{U}$ and $p_{\mathscr{U}}(x_0) = U_0$. Such a canonical map is guaranteed to exist if $(\mathscr{U}, U_0) \in \Lambda$: find a locally finite partition of unity $\{\phi_U\}_{U \in \mathscr{U}}$ subordinated to \mathscr{U} such that $\phi_{U_0}(x_0) = 1$. When $U \in \mathscr{U}$ and $x \in U$, determine $p_{\mathscr{U}}(x)$ by requiring its barycentric coordinate belonging to the vertex U of $|N(\mathscr{U})|$ to be $\phi_U(x)$. According to this construction, the requirement $\phi_{U_0}(x_0) = 1$ gives $p_{\mathscr{U}}(x_0) = U_0$.

A canonical map $p_{\mathscr{U}}$ is unique up to based homotopy and whenever (\mathscr{V}, V_0) refines (\mathscr{U}, U_0) ; the compositions $p_{\mathscr{U}} \varphi \circ p_{\mathscr{V}}$ and $p_{\mathscr{U}}$ are homotopic as based maps. Hence, for $n \ge 1$, the homomorphisms $p_{\mathscr{U}\#} : \pi_n(X, x_0) \to \pi_n(|N(\mathscr{U})|, U_0)$ satisfy $p_{\mathscr{U}} \varphi_{\mathscr{U}} = p_{\mathscr{U}\#}$. These homomorphisms induce the following canonical homomorphism to the limit, which is natural in X:

$$\Psi_n: \pi_n(X, x_0) \to \check{\pi}_n(X, x_0)$$
 given by $\Psi_n([f]) = ([p_{\mathscr{U}} \circ f])$

The subgroup ker(Ψ_n), which we refer to as the *n*-th shape kernel is, in a sense, a rough algebraic measure of the *n*-dimensional homotopical information lost when approximating X by polyhedra. Specifically, $[f] \in \pi_n(X, x_0) \setminus \ker(\Psi_n)$ if and only if there exists some polyhedron K and map $p : (X, x_0) \to (K, k_0)$ such that $p_{\#}([f]) \neq 0$ in $\pi_n(K, k_0)$. Of utmost important is the situation when ker(Ψ_n) = 1. In this case, $\pi_n(X, x_0)$ can be understood as a subgroup of $\check{\pi}_n(X, x_0)$, that is, the *n*-th shape group retains all the data in the *n*-th homotopy group of X. A space for which ker(Ψ_n) = 1 is said to be π_n -shape injective.

3 Higher Spanier Groups

To define higher Spanier groups as in [1], we briefly recall the action of the fundamental groupoid on the higher homotopy groups of a space. Fix a retraction $R: S^n \times I \to S^n \times \{0\} \cup \{d_0\} \times I$. Given a map $f: (S^n, d_0) \to (X, y)$ and a path $\alpha: I \to X$ with $\alpha(0) = x$ and $\alpha(1) = y$, define $F: S^n \times \{0\} \cup \{d_0\} \times I \to X$ so that g(x, 0) = f(x) and $f(d_0, t) = \alpha(1 - t)$. The the *path-conjugate of* f by α is the map $\alpha * f: (S^n, d_0) \to (X, x)$ given by $\alpha * f(x) = F \circ R(x, 0)$.

Path-conjugation defines the basepoint-change isomorphism $\varphi_{\alpha} : \pi_n(X, y) \to \pi_n(X, x), \ \varphi_{\alpha}([f]) = [\alpha * f].$ In particular, $[\alpha * f][\alpha * g] = [\alpha * (f \cdot g)]$ and if $[\alpha] = [\beta]$, then $[\alpha * f] = [\beta * f]$. Note that when $n = 1, f : S^1 \to X$ is a loop and $\alpha * f \simeq \alpha \cdot f \cdot \alpha^-$.

Definition 3.1. Let $n \ge 1$ and $\alpha : (I,0) \to (X,x_0)$ be a path and U be an open neighborhood of $\alpha(1)$ in X. Define

$$[\alpha] * \pi_n(U) = \{ [\alpha * f] \in \pi_n(X, x_0) \mid f(S^n) \subseteq U \}.$$

Since $[\alpha * f][\alpha * g] = [\alpha * (f \cdot g)]$, the set $[\alpha] * \pi_n(U)$ is a subgroup of $\pi_n(X, x_0)$.

Definition 3.2. Let $n \ge 1$, \mathscr{U} be an open cover of X, and $x_0 \in X$. The *n*-th Spanier group of (X, x_0) with respect to \mathscr{U} is the subgroup $\pi_n^{Sp}(\mathscr{U}, x_0)$ of $\pi_n(X, x_0)$ generated by the subgroups $[\alpha] * \pi_n(U)$ for all pairs (α, U) with $\alpha(1) \in U$ and $U \in \mathscr{U}$. In short:

$$\pi_n^{Sp}(\mathscr{U}, x_0) = \langle [\alpha] * \pi_n(U) \mid U \in \mathscr{U}, \alpha(1) \in U \rangle$$

The *n*-th Spanier group of (X, x_0) is the intersection

$$\pi_n^{Sp}(X, x_0) = \bigcap_{\mathscr{U} \in O(X)} \pi_n^{Sp}(\mathscr{U}, x_0).$$

Remark 3.3. We note that our definition of *n*-th Spanier group is the "unbased" definition from [1]; see also [16] for more on "based" Spanier groups, which is defined using covers of X by *pointed* open sets. The two notions agree for locally path connected spaces. When n = 1, Spanier groups (absolute and relative to a cover) are normal subgroups of $\pi_1(X, x_0)$. Certainly, the same is true for $n \ge 2$ since higher homotopy groups are abelian. In the case n = 1, Spanier groups have been studied heavily due to their relationship to covering space theory [30].

Remark 3.4 (Functorality). If $f : (X, x_0) \to (Y, y_0)$ is a map and \mathscr{V} is an open cover of Y, then $\mathscr{U} = \{f^{-1}(V) \mid V \in \mathscr{V}\}$ is an open cover of X such that $f_{\#}(\pi_n(\mathscr{U}, x_0)) \subseteq \pi_n(\mathscr{V}, y_0)$. It follows that $f_{\#}(\pi_n^{Sp}(X, x_0)) \subseteq \pi_n^{Sp}(Y, y_0)$. Thus $(f_{\#})|_{\pi_n^{Sp}(X, x_0)} : \pi_n^{Sp}(X, x_0) \to \pi_n^{Sp}(Y, y_0)$ is well-defined showing that π_1^{Sp} : **Top**_{*} \to **Grp** and π_n^{Sp} : **Top**_{*} \to **Ab**, $n \ge 2$, are functors [1, Theorem 4.2]. Moreover, if $g : (Y, y_0) \to (X, x_0)$ is a based homotopy inverse of f, then $(f_{\#})|_{\pi_n^{Sp}(X, x_0)}$ and $(g_{\#})|_{\pi_n^{Sp}(Y, y_0)}$ are inverse isomorphisms. Hence, these functors descend to functors $\mathbf{hTop}_* \to \mathbf{Grp}$ and $\mathbf{hTop}_* \to \mathbf{Ab}$ on the based homotopy category.

Remark 3.5 (Basepoint invariance). Suppose $x_0, x_1 \in X$ and $\beta : I \to X$ is a path from x_1 to x_0 , and $\varphi_\beta : \pi_n(X, x_0) \to \pi_n(X, x_1), \varphi_\beta([g]) = [\beta * g]$ is the basepoint-change isomorphism. If $[\alpha * f]$ is a generator of $\pi_n^{Sp}(\mathscr{U}, x_0)$, then $\varphi_\beta([\alpha * f]) = [(\beta \cdot \alpha) * f]$ is a generator of $\pi_n^{Sp}(\mathscr{U}, x_1)$. It follows that $\varphi_\beta(\pi_n^{Sp}(\mathscr{U}, x_0)) = \pi_n^{Sp}(\mathscr{U}, x_1)$. Moreover, in the absolute case, we have $\varphi_\beta(\pi_n^{Sp}(X, x_0)) = \pi_n^{Sp}(X, x_1)$. In particular, changing the basepoint of X does not change the isomorphism type of the *n*-th Spanier group, particularly whether it is trivial or not.

In terms of our choice of generators, a generic element of $\pi_n^{Sp}(\mathscr{U}, x_0)$ is a product $\prod_{i=1}^m [\alpha_i * f_i]$ where each map $f_i : S^n \to X$ has an image in some open set $U_i \in \mathscr{U}$ (see Figure 1). The next lemma identifies how such products might actually appear in practice and motivates the proof of our key technical Lemma below (Lemma 5.1). Recall that $(\mathrm{sd}^m \Delta_{n+1})_n$ is the union of the boundaries of the (n+1)-simplices in the *m*-th barycentric subdivision $\mathrm{sd}^m \Delta_{n+1}$.

Figure 1: An element of $\pi_2^{Sp}(\mathscr{U}, x_0)$, which is a product of three path-conjugate generators $[\alpha_i * f_i]$.

Lemma 3.6. If $m, n \in \mathbb{N}$, \mathscr{U} is an open cover of X, and $f : ((sd^m \Delta_{n+1})_n, d_0) \rightarrow (X, x_0)$ is a map such that for every (n + 1)-simplex σ of $sd^m \Delta_{n+1}$, we have $f(\partial \sigma) \subseteq U$ for some $U \in \mathscr{U}$, then $f_{\#}(\pi_n((sd^m \Delta_{n+1})_n, d_0)) \subseteq \pi_n^{Sp}(\mathscr{U}, x_0)$.

Proof. The case n = 1 is proved in [4]. Suppose $n \ge 2$ and set $K = \operatorname{sd}^m \Delta_{n+1}$. The set $\mathscr{W} = \{f^{-1}(U) \mid U \in \mathscr{U}\}$ is an open cover of K_n such that $f_\#(\pi_n^{Sp}(\mathscr{W}, d_0)) \subseteq \pi_n^{Sp}(\mathscr{U}, x_0)$ and for every (n+1)-simplex σ in K, we have $\partial \sigma \subseteq f^{-1}(U)$ for some $U \in \mathscr{U}$. Thus it suffices to prove $\pi_n^{Sp}(\mathscr{W}, d_0) = \pi_n(K_n, d_0)$. Let S be the set of n-simplices of K. Since $n \ge 2$, K_n is simply connected. Standard simplicial homology arguments give that the reduced singular homology groups of K_n are trivial in dimension < n and $H_n(K_n)$ is finitely generated free abelian generated. A set of free generators for $H_n(K_n)$ can be chosen by fixing the homology class of a simplicial map $g_\sigma: \partial \Delta_{n+1} \to K_n$ that sends $\partial \Delta_{n+1}$ homeomorphically onto the boundary of an (n + 1)-simplex of $\sigma \in S$. Thus K_n is (n - 1)-connected and the Hurewicz homomorphism $h: \pi_k(K_n, d_0) \to H_k(K_n)$ is an isomorphism for all $1 \le k \le n$. In particular, let $p_\sigma: I \to K_n$ be any path from d_0 to $g_\sigma(d_0)$. Then $\pi_n(K_n, d_0)$ is freely generated by the path-conjugates $[p_\sigma * g_\sigma], \sigma \in S$. By assumption, for every $\sigma \in S$, $[p_\sigma * g_\sigma]$ is a generator of $\pi_n^{Sp}(\mathscr{W}, d_0) = \pi_n(K_n, d_0)$ follows. □

To characterize the triviality of relative Spanier groups, we establish the following terminology.

Definition 3.7. Let $n \ge 0$. We say a space X is

- (1) semilocally π_n -trivial at $x \in X$ if there exists an open neighborhood U of X such that every map $S^n \to U$ is null-homotopic in X.
- (2) semilocally n-connected at $x \in X$ if there exists an open neighborhood U of X such that every map $S^k \to X$, $0 \leq k \leq n$ is null-homotopic in X.

We say X is semilocally π_n -trivial (resp. semilocally *n*-connected) if it has this property at all of its points.

It is straightforward to see that X is semilocally n-connected at $x \in X$ if and only if X is semilocally π_k -trivial for all $0 \leq k \leq n$.

Remark 3.8. Note that a space X is semilocally π_n -trivial if and only if X admits an open cover \mathscr{U} such that $\pi_n^{Sp}(\mathscr{U}, x_0)$ is trivial [1, Theorem 3.7]. Moreover, X is semilocally *n*-connected if and only if X admits an open cover \mathscr{U} such that $\pi_k^{Sp}(\mathscr{U}, x_0)$ is trivial for all $1 \leq k \leq n$.

Attempting a proof of Theorem 1.1, one should not expect the groups $\pi_n^{Sp}(\mathscr{U}, x_0)$ and $\ker(p_{\mathscr{U}\#})$ to agree "on the nose." Indeed, the following example shows that we should not expect the equality $\pi_n^{Sp}(\mathscr{U}, x_0) = \ker(p_{\mathscr{U}\#})$ to hold even in the "nicest" local circumstances.

Example 3.9. Let $X = S^2 \vee S^2$ and W be a contractible neighborhood of d_0 in S^2 . Set $U_1 = S^2 \vee W$ and $U_2 = W \vee S^2$ and consider the open cover $\mathscr{U} = \{U_1, U_2\}$ of X. Then $\pi_3^{Sp}(\mathscr{U}, x_0) \cong \mathbb{Z}^2$ is freely generated by the homotopy classes of the two inclusions $i_1, i_2 : S^2 \to X$. However, $\pi_3(X) \cong \mathbb{Z}^3$ is freely generated by $[i_1], [i_2]$, and the Whitehead product $[[i_1, i_2]]$. However $|N(\mathscr{U})|$ is a 1-simplex and is therefore contractible. Thus $\ker(p_{\mathscr{U}}_{\#})$ is equal to $\pi_3(X)$ and contains $[[i_1, i_2]]$. Even though the spaces X, U_1, U_2 are locally contractible and the elements of \mathscr{U} are 1-connected, $\pi_n^{Sp}(\mathscr{U}, x_0)$ is a proper subgroup of $\ker(p_{\mathscr{U}_{\#}})$. One can view this failure as the result of two facts: (1) The sets U_i are not 2-connected and (2) the definition of Spanier group does not allow one to generate homotopy classes by taking Whitehead products of maps $S^2 \to U_i$ in the neighboring elements of \mathscr{U} .

First, we show the inclusion $\pi_n^{Sp}(X, x_0) \subseteq \ker(\Psi_n)$ holds in full generality. Recall the intersections $\pi_n^{Sp}(X, x_0) = \bigcap_{\mathscr{U} \in O(X)} \pi_n^{Sp}(\mathscr{U}, x_0)$ and $\ker(\Psi_n) = \bigcap_{(\mathscr{U}, U_0) \in \Lambda} \ker(p_{\mathscr{U}\#})$ are formally indexed by different sets.

Lemma 3.10. For every open cover \mathscr{U} of X and canonical map $p_{\mathscr{U}} : X \to |N(\mathscr{U})|$, there exists a refinement $\mathscr{U} \leq \mathscr{V}$ such that $\pi_n^{Sp}(\mathscr{V}, x_0) \subseteq \ker(p_{\mathscr{U}\#})$ in $\pi_n(X, x_0)$.

Proof. Let $\mathscr{U} \in O(X)$. The stars $\operatorname{st}(U, |N(\mathscr{U})|), U \in \mathscr{U}$ form an open cover of $|N(\mathscr{U})|$ and therefore $\mathscr{V} = \{p_{\mathscr{U}}^{-1}(\operatorname{st}(U, |N(\mathscr{U})|)) \mid U \in \mathscr{U}\}$ is an open cover of X. Since $p_{\mathscr{U}}$ is a canonical map, we have $p_{\mathscr{U}}^{-1}(\operatorname{st}(U, |N(\mathscr{U})|)) \subseteq U$ for all $U \in \mathscr{U}$. Thus \mathscr{V} is a refinement of \mathscr{U} . A generator of $\pi_n^{Sp}(\mathscr{V}, x_0)$ is of the form $[\alpha * f]$ for a map $f : S^n \to p_{\mathscr{U}}^{-1}(\operatorname{st}(U, |N(\mathscr{U})|))$. However, $p_{\mathscr{U}} \circ f$ has image in the contractible open set $\operatorname{st}(U, |N(\mathscr{U})|)$ and is therefore null-homotopic. Thus $p_{\mathscr{U}}_{\mathscr{U}}([\alpha * f]) = 0$. We conclude that $p_{\mathscr{U}_{\mathscr{U}}}(\pi_n^{Sp}(\mathscr{V}, x_0)) = 0$. \Box

Corollary 3.11. [1, Theorem 4.14] Let $n \ge 1$. For any based space (X, x_0) , we have $\pi_n^{Sp}(X, x_0) \subseteq \ker(\Psi_n)$.

Proof. Suppose $[f] \in \pi_n^{Sp}(X, x_0)$. Given a normal, based open cover $(\mathscr{U}, U_0) \in \Lambda$ and any canonical map $p_{\mathscr{U}} : X \to |N(\mathscr{U})|$, Lemma 3.10 ensures we can find a refinement $\mathscr{U} \leq \mathscr{V}$ such that $\pi_n^{Sp}(\mathscr{V}, x_0) \subseteq \ker(p_{\mathscr{U}\#})$. Thus $[f] \in \pi_n^{Sp}(\mathscr{V}, x_0) \subseteq \ker(p_{\mathscr{U}\#})$, which shows that $[f] \in \ker(\Psi_n)$.

Example 3.12 (higher earring spaces). An important space, which we will call upon repeatedly for examples, is the *n*-dimensional earring space

$$\mathbb{E}_n = \bigcup_{j \in \mathbb{N}} \left\{ \mathbf{x} \in \mathbb{R}^{n+1} \mid \|\mathbf{x} - (1/j, 0, 0, \dots, 0)\| = 1/j \right\},\$$

which is a shrinking wedge (one-point union) of *n*-spheres with basepoint $b_0 = (0, 0, \ldots, 0)$. It is known that \mathbb{E}_n is (n-1)-connected, locally (n-1)-connected, and π_n -shape injective for all $n \ge 1$ [27, 12]. However, \mathbb{E}_n is not semilocally π_n -trivial. Thus $\pi_n^{Sp}(\mathscr{U}, b_0) \ne 0$ for any open cover \mathscr{U} of \mathbb{E}_n even though "in the limit" $\pi_n^{Sp}(\mathbb{E}_n, b_0)$ is trivial.

Example 3.13. Let $n \ge 3$ and notice that $\mathbb{E}_1 \vee \mathbb{E}_n$ is not semilocally π_1 connected (since it has \mathbb{E}_1 as a retract) and therefore fails to be semilocally (n-1)-connected. However, it has recently been shown that $\pi_k(\mathbb{E}_1 \vee \mathbb{E}_n) = 0$ for $2 \le k \le n-1$ and that $\mathbb{E}_1 \vee \mathbb{E}_n$ is π_n -shape injective [3]. Thus $\mathbb{E}_1 \vee \mathbb{E}_n$ is
semilocally π_k -trivial for all $k \le n-1$ except k = 1 and $\pi_n^{Sp}(\mathbb{E}_1 \vee \mathbb{E}_n, b_0) = 0$.
Thus the failure to be semilocally *n*-connected can occur at single dimension
less than *n*.

4 Recursive Extension Lemmas

Toward a proof of the inclusion $\ker(\Psi_n) \subseteq \pi_n^{Sp}(X, x_0)$, we introduce some convenient notation and definitions. If \mathscr{U} is an open cover and $A \subseteq X$, then $\operatorname{St}(A, \mathscr{U}) = \bigcup \{ U \in \mathscr{U} \mid A \cap U \neq \varnothing \}$. Note that if $A \subseteq B$, then $\operatorname{St}(A, \mathscr{U}) \subseteq \operatorname{St}(B, \mathscr{U})$. Also if $\mathscr{U} \leq \mathscr{V}$, then $\operatorname{St}(A, \mathscr{V}) \subseteq \operatorname{St}(A, \mathscr{U})$. We take the following terminology from [33].

Definition 4.1. Let $\mathscr{U}, \mathscr{V} \in O(X)$.

- (1) We say \mathscr{V} is a barycentric-star refinement of \mathscr{U} if for every $x \in X$, we have $\operatorname{St}(x, \mathscr{V}) \subseteq U$ for some $U \in \mathscr{U}$. We write $\mathscr{U} \leq_* \mathscr{V}$.
- (2) We say \mathscr{V} is a *star refinement* of \mathscr{U} if for every $V \in \mathscr{V}$, we have $\operatorname{St}(V, \mathscr{V}) \subseteq U$ for some $U \in \mathscr{U}$. We write $\mathscr{U} \leq_{**} \mathscr{V}$.

Note that if $\mathscr{U} \leq_* \mathscr{V} \leq_* \mathscr{W}$, then $\mathscr{U} \leq_{**} \mathscr{W}$.

Lemma 4.2. [31] A T_1 space X is paracompact if and only if for every open cover \mathscr{U} of X there exists an open cover \mathscr{V} such that $\mathscr{U} \leq_* \mathscr{V}$.

Definition 4.3. [29] Let $n \in \{0, 1, 2, 3, ..., \infty\}$. A space X is UV^n at $x \in X$ and every neighborhood U of x, there exists a neighborhood V of x such that $V \subseteq U$ and such that for all $0 \leq k \leq n$ $(k < \infty \text{ if } n = \infty)$, every map $f : \partial \Delta_{k+1} \to V$ extends to a map $g : \Delta_{k+1} \to U$. We say X is UV^n if X is UV^n at all of its points. We have the following evident implications for both the point-wise and global properties:

X is locally n-connected \Rightarrow X is $UV^n \Rightarrow$ X is semilocally n-connected

For first countable spaces, the UV^n property is equivalent to the "*n*-tame" property in [3] defined in terms of shrinking sequences of maps.

Remark 4.4. In much of the Shape Theory literature, the UV^n property is referred to as the " LC^n property" [26, p. 40]. This is sometimes confused with local *n*-connectedness in which one has a basis of *n*-connected open sets. Since the two are not equivalent even for Peano continua, we prefer the " UV^n " terminology.

Definition 4.5. Suppose $\mathscr{U} \leq \mathscr{V}$ in O(X).

- (1) We say \mathscr{V} is an *n*-refinement of \mathscr{U} , and write $\mathscr{U} \leq^n \mathscr{V}$, if for all $1 \leq k \leq n$, $V \in \mathscr{V}$, and maps $f : \partial \Delta_{k+1} \to V$, there exists $U \in \mathscr{U}$ with $V \subseteq U$ and a continuous extension $g : \Delta_{k+1} \to U$ of f.
- (2) We say \mathscr{V} is an *n*-barycentric-star refinement of \mathscr{U} , and write $\mathscr{U} \leq_*^n \mathscr{V}$, if for every $0 \leq k \leq n$, for every $x \in X$, and every map $f : \partial \Delta_{k+1} \to$ $\operatorname{St}(x, \mathscr{V})$, there exists $U \in \mathscr{U}$ with $\operatorname{St}(x, \mathscr{V}) \subseteq U$ and a continuous extension $g : \Delta_{k+1} \to U$ of f.

Note that if $\mathscr{U} \leq^n \mathscr{V}$ (resp. $\mathscr{U} \leq^n_* \mathscr{V}$), then $\mathscr{U} \leq^k \mathscr{V}$ (resp. $\mathscr{U} \leq^k_* \mathscr{V}$) for all $0 \leq k \leq n$.

Lemma 4.6. Suppose X is paracompact, Hausdorff, and UV^n . For every $\mathscr{U} \in O(X)$, there exists $\mathscr{V} \in O(X)$ such that $\mathscr{U} \leq^n_* \mathscr{V}$.

Proof. Let $\mathscr{U} \in O(X)$. Since X is UV^n , for every $U \in \mathscr{U}$ and $x \in U$, there exists an open neighborhood W(U, x) such that $W(U, x) \subseteq U$ and such that for all $1 \leq k \leq n$, each map $f : \partial \Delta_{k+1} \to W(U, x)$ extends to a map $g : \Delta_{k+1} \to U$. Let $\mathscr{W} = \{W(U, x) \mid U \in \mathscr{U}, x \in U\}$ and note $\mathscr{U} \leq^n \mathscr{W}$. Since X is paracompact Hausdorff, by Lemma 4.2, there exists $\mathscr{V} \in O(X)$ such that $\mathscr{W} \leq_* \mathscr{V}$.

Fix $x' \in X$. Then $\operatorname{St}(x', \mathscr{V}) \subseteq W(U, x)$ for some $x \in U \in \mathscr{U}$. Then $\operatorname{St}(x', \mathscr{V}) \subseteq U$. Moreover, if $1 \leq k \leq n$ and $f : \partial \Delta_{k+1} \to \operatorname{St}(x', \mathscr{V})$ is a map, then since f has image in W(U, x), there is an extension $g : \Delta_{k+1} \to U$. This verifies that $\mathscr{U} \leq_*^n \mathscr{V}$.

For the next two lemmas, we fix $n \in \mathbb{N}$, a geometric simplicial complex K consisting of (n + 1)-simplices and their faces, and a subcomplex $L \subseteq K$ with $\dim(L) \leq n$. Let $M[k] = L \cup K_k$ denote the union of L and the k-skeleton of K. Since $L \subseteq K_n$, $M[n] = K_n$ is the union of the boundaries of the (n + 1)-simplices of K. Later we will consider the cases where (1) $K = \operatorname{sd}^m \Delta_{n+1}$ and $L = \operatorname{sd}^m \partial \Delta_{n+1}$ and (2) $K = \operatorname{sd}^m \partial \Delta_{n+2}$ and $L = \{d_0\}$.

Lemma 4.7 (Recursive Extensions). Suppose $1 \leq k \leq n$, $\mathscr{U} \leq_* \mathscr{V} \leq_*^{k-1} \mathscr{W}$, $m \in \mathbb{N}$, and $f: M[k-1] \to X$ is a map such that for every n+1-simplex σ of K, we have $f(\sigma \cap M[k-1]) \subseteq W_{\sigma}$ for some $W_{\sigma} \in \mathscr{W}$. Then there exists a continuous extension $g: M[k] \to X$ of f such that for every (n+1)-simplex σ of K, we have $g(\sigma \cap M[k]) \subseteq U_{\sigma}$ for some $U_{\sigma} \in \mathscr{U}$.

Proof. Supposing the hypothesis, we must extend f to the k-simplices of M[k] that do not lie in L. Let τ be a k-simplex of M[k] that does not lie in L and let S_{τ} be the set of (n + 1)-simplices in K that contain τ . By assumption, S_{τ} is non-empty. We make some general observations first. Since f maps the (k - 1)-skeleton of each (n + 1)-simplex $\sigma \in S_{\tau}$ into W_{σ} and $\partial \tau$ lies in this (k - 1)-skeleton, we have $f(\partial \tau) \subseteq \bigcap_{\sigma \in S_{\tau}} W_{\sigma}$. Thus, for all τ , we have

$$f(\partial \tau) \subseteq \bigcap_{\sigma \in S_{\tau}} \operatorname{St}(W_{\sigma}, \mathscr{V}).$$

Fix a vertex v_{τ} of τ and let $x_{\tau} = f(v_{\tau})$. Then $x_{\tau} \in W_{\sigma} \subseteq \operatorname{St}(x_{\tau}, \mathscr{W})$ whenever $\sigma \in S_{\tau}$. Since $\mathscr{V} \leq_*^{k-1} \mathscr{W}$, we may find $V_{\tau} \in \mathscr{V}$ such that $\operatorname{St}(x_{\tau}, \mathscr{W}) \subseteq V_{\tau}$ and such that every map $\partial \Delta_k \to \operatorname{St}(x_{\tau}, \mathscr{W})$ extends to a map $\Delta_k \to V_{\tau}$. In particular, $f|_{\partial \tau} : \partial \tau \to W_{\sigma}$ extends to a map $\tau \to V_{\tau}$. We define $g : M[k] \to X$ so that it agrees with f on M[k-1] and so that the restriction of g to τ is a choice of continuous extension $\tau \to V_{\tau}$ of $f|_{\partial \tau}$.

We now choose the sets U_{σ} . Fix an (n+1)-simplex σ of K. If the k-skeleton of σ lies entirely in L, we choose any $U_{\sigma} \in \mathscr{U}$ satisfying $W_{\sigma} \subseteq U_{\sigma}$. Suppose there exists at least one k-simplex in σ not in L. Then whenever τ is a k-simplex of σ not in L, we have $W_{\sigma} \subseteq \operatorname{St}(x_{\tau}, \mathscr{W}) \subseteq V_{\tau}$. Fix a point $y_{\sigma} \in W_{\sigma}$. The assumption that $\mathscr{U} \leq_* \mathscr{V}$ implies that there exists $U_{\sigma} \in \mathscr{U}$ such that $\operatorname{St}(y_{\sigma}, \mathscr{V}) \subseteq U_{\sigma}$. In this case, we have $W_{\sigma} \subseteq V_{\tau} \subseteq U_{\sigma}$ whenever τ is a k-simplex of σ not in L.

Finally, we check that g satisfies the desired property. Again, fix an (n + 1)simplex σ of K. If τ is a k-simplex of σ not in L, our definition of g gives $g(\tau) \subseteq V_{\tau} \subseteq U_{\sigma}$. If τ' is a k-simplex in $\sigma \cap L$, then $g(\tau') = f(\tau') \subseteq W_{\sigma} \subseteq U_{\sigma}$.
Overall, this shows that $g(\sigma \cap M[k]) \subseteq U_{\sigma}$ for each (n + 1)-simplex σ of K.

A direct, recursive application of the previous lemma is given in the following statement.

Lemma 4.8. Suppose there is a sequence of open covers

$$\mathscr{U} = \mathscr{W}_n \leq_* \mathscr{V}_n \leq_*^{n-1} \mathscr{W}_{n-1} \leq_* \cdots \leq_*^2 \mathscr{W}_2 \leq_* \mathscr{V}_2 \leq_*^1 \mathscr{W}_1 \leq_* \mathscr{V}_1 \leq_*^0 \mathscr{W}_0 = \mathscr{W}$$

and a map $f_0: M[0] \to X$ such that for every (n + 1)-simplex σ of K, we have $f_0(\sigma \cap M[0]) \subseteq W$ for some $W \in \mathcal{W}$. Then there exists an extension $f_n: M[n] \to X$ of f_0 such that for every (n + 1)-simplex σ of K, we have $f_n(\partial \sigma) \subseteq U$ for some $U \in \mathcal{U}$.

5 A proof of Theorem 1.1

We apply the extension results of the previous section in the case where $K = \mathrm{sd}^m \Delta_{n+1}$ for some $m \in \mathbb{N}$ and $L = \mathrm{sd}^m \partial \Delta_{n+1}$ so that $M[k] = L \cup K_k$ consists of the boundary of Δ_{n+1} and the k-simplices of $\mathrm{sd}^m \Delta_{n+1}$ not in the boundary. Note that M[n] is the union of the boundaries of the (n + 1)-simplices of $\mathrm{sd}^m \Delta_{n+1}$.

Lemma 5.1. Let $n \ge 1$. Suppose X is paracompact, Hausdorff, and UV^{n-1} . Then for every open cover \mathscr{U} of X, there exists $(\mathscr{V}, V_0) \in \Lambda$ such that $\ker(p_{\mathscr{V}\#}) \subseteq \pi_n^{Sp}(\mathscr{U}, x_0)$.

Proof. Suppose $\mathscr{U} \in O(X)$. Since X is paracompact, Hausdorff, and UV^{n-1} , we may apply Lemmas 4.2 and 4.6 to first find a sequence of refinements :

$$\mathscr{U} = \mathscr{U}_n \leq_* \mathscr{V}_n \leq_*^{n-1} \mathscr{U}_{n-1} \leq_* \cdots \leq_*^2 \mathscr{U}_2 \leq_* \mathscr{V}_2 \leq_*^1 \mathscr{U}_1 \leq_* \mathscr{V}_1 \leq_*^0 \mathscr{U}_0$$

and then one last refinement $\mathscr{U}_0 \leq_* \mathscr{V}_0 = \mathscr{V}$. Let $V_0 \in \mathscr{V}$ be any set containing x_0 and recall that since X is paracompact Hausdorff $(\mathscr{V}, V_0) \in \Lambda$. We will show that $\ker(p_{\mathscr{V}\#}) \subseteq \pi_n^{Sp}(\mathscr{U}, x_0)$. Note that $p_{\mathscr{V}}^{-1}(\operatorname{st}(V, N(\mathscr{V}))) \subseteq V$ for some choice of canonical map $p_{\mathscr{V}}$.

Suppose $[f] \in \ker(p_{\mathcal{V}\#})$ is represented by a map $f: (|\partial \Delta_{n+1}|, d_0) \to (X, x_0)$. We will show that $[f] \in \pi_n^{Sp}(\mathcal{U}, x_0)$. Then $p_{\mathcal{V}} \circ f: |\partial \Delta_{n+1}| \to |N(\mathcal{V})|$ is null-homotopic and extends to a map $h: |\Delta_{n+1}| \to |N(\mathcal{V})|$. Set $Y_V = h^{-1}(\operatorname{st}(V, N(\mathcal{V})))$ so that $\mathscr{Y} = \{Y_V \mid V \in \mathcal{V}\}$ is an open cover of $|\Delta_{n+1}|$.

We find a particular simplicial approximation for h using the cover \mathscr{Y} [28, Theorem 16.1]: let λ be a Lebesgue number for \mathscr{Y} so that any subset of Δ_{n+1} of diameter less than λ lies in some element of \mathscr{Y} . Find $m \in \mathbb{N}$ such that each simplex in $\mathrm{sd}^m \Delta_{n+1}$ has diameter less than $\lambda/2$. Thus the star $\mathrm{st}(a, \mathrm{sd}^m \Delta_{n+1})$ of each vertex a in $\mathrm{sd}^m \Delta_{n+1}$ lies in a set $Y_{V_a} \in \mathscr{Y}$ for some $V_a \in \mathscr{V}$. The assignment $a \mapsto V_a$ on vertices extends to a simplicial approximation $h' : \mathrm{sd}^m \Delta_{n+1} \to N(\mathscr{V})$ of h, i.e. a simplicial map h' such that

$$h(\operatorname{st}(a, \operatorname{sd}^{m} \Delta_{n+1})) \subseteq \operatorname{st}(h'(a), N(\mathscr{V})) = \operatorname{st}(V_a, N(\mathscr{V}))$$

for each vertex a [28, Lemma 14.1].

Let $K = \operatorname{sd}^m \Delta_{n+1}$ and $L = \operatorname{sd}^m \partial \Delta_{n+1}$ so that $M[k] = L \cup K_k$. First, we extend $f: L \to X$ to a map $f_0: M[0] \to X$. For each vertex a in K, pick a point $f_0(a) \in V_a$. In particular, if $a \in L$, take $f_0(a) = f(a)$. This choice is well defined since on boundary vertices $a \in L$ since we have $p_{\mathscr{V}} \circ f(a) = h(a) \in \operatorname{st}(V_a, |N(\mathscr{V})|)$ and thus $f(a) \in p_{\mathscr{V}}^{-1}(\operatorname{st}(V_a, |N(\mathscr{V}|))) \subseteq V_a$.

Note that h' maps every simplex $\sigma = [a_0, a_1, \ldots, a_k]$ of K to the simplex of $N(\mathscr{V})$ spanned by $\{h'(a_i) \mid 0 \leq i \leq k\} = \{V_{a_i} \mid 0 \leq i \leq k\}$. By definition of the nerve, we have $\bigcap\{V_{a_i} \mid 0 \leq i \leq k\} \neq \emptyset$. Pick a point $x_{\sigma} \in \bigcap\{V_{a_i} \mid 0 \leq i \leq k\}$.

By our initial choice of refinements, we have $\mathscr{U}_0 \leq_* \mathscr{V}$. If $\sigma = [a_0, a_1, \ldots, a_{n+1}]$ is an (n+1)-simplex of K, then $\operatorname{St}(x_{\sigma}, \mathscr{V}) \subseteq U_{\sigma}$ for some $U_{\sigma} \in \mathscr{U}$. In particular $\{f_0(a_i) \mid 0 \leq i \leq n+1\} \subseteq \bigcup \{V_{a_i} \mid 0 \leq i \leq n+1\} \subseteq U_{\sigma}$. Thus f_0 maps the 0-skeleton of σ into U_{σ} . If $1 \leq k \leq n, \tau$ is a k-face of $\sigma \cap L$ with $a_i \in \tau$, then $p_{\mathscr{V}} \circ f_0(\operatorname{int}(\tau)) = p_{\mathscr{V}} \circ f(\operatorname{int}(\tau)) = h(\operatorname{int}(\tau)) \subseteq h(\operatorname{st}(a_i, K)) \subseteq \operatorname{st}(V_{a_i}, |N(\mathscr{V})|)$. It follows that

$$f_0(\tau) \subseteq p_{\mathscr{V}}^{-1}(\mathrm{st}(V_{a_i}, |N(\mathscr{V})|)) \subseteq V_{a_i} \subseteq U_{\sigma}.$$

Thus for every *n*-simplex in $\sigma \cap L$, we have $f_0(\tau) \subseteq U_{\sigma}$. We conclude that for every (n+1)-simplex σ of K, we have $f_0(\sigma \cap M[0]) \subseteq U_{\sigma}$.

By our choice of sequence of refinements, we are precisely in the situation to apply Lemma 4.8. Doing so, we obtain an extension $f_n: M[n] \to X$ of f such that for every (n + 1)-simplex σ of K, we have $f_n(\partial \sigma) \subseteq \mathbf{U}_{\sigma}$ for some $\mathbf{U}_{\sigma} \in \mathscr{U}_n = \mathscr{U}$. By Lemma 3.6, we have $[f] = [f_n|_{\partial \Delta_{n+1}}] \in \pi_n^{Sp}(\mathscr{U}, x_0)$.

Finally, both inclusions have been established and provide a proof of our main result.

Proof of Theorem 1.1. The inclusion $\pi_n^{Sp}(X, x_0) \subseteq \ker(\Psi_n)$ holds in general by Corollary 3.11. Under the given hypotheses, the inclusion $\ker(\Psi_n) \subseteq \pi_n^{Sp}(X, x_0)$ follows from Lemma 5.1.

When considering examples relevant to Theorem 1.1, it is helpful to compare π_n -shape injectivity with the following weaker property from [19].

Definition 5.2. We say a space X is *n*-homotopically Hausdorff at $x \in X$ if no non-trivial element of $\pi_n(X, x)$ has a representing map in every neighborhood of x. We say X is *n*-homotopically Hausdorff if it is *n*-homotopically Hausdorff at all of its points.

Clearly, π_n -shape injectivity $\Rightarrow n$ -homotopically Hausdorff. The next example, which highlights the effectiveness of Theorem 1.1, shows the converse is not true even for UV^{n-1} Peano continua.

Example 5.3. Fix $n \ge 2$ and let $\ell_j : S^n \to \mathbb{E}_n$ be the inclusion of the *j*-th sphere and define $f : \mathbb{E}_n \to \mathbb{E}_n$ to be the shift map given by $f \circ \ell_j = \ell_{j+1}$. Let $M_f = \mathbb{E}_n \times [0,1]/\sim, (x,0) \sim (f(x),1)$ be the mapping torus of f. We identify \mathbb{E}_n with the image of $\mathbb{E}_n \times \{0\}$ in M_f and take b_0 to be the basepoint of M_f . Let $\alpha : I \to M_f$ be the loop where $\alpha(t)$ is the image of (b_0, t) . Then M_f is locally contractible at all points other than those in the image of α . Also, every point $\alpha(t)$ has a neighborhood that deformation retracts onto a homeomorphic copy of \mathbb{E}_n . Thus, since \mathbb{E}_n is UV^{n-1} , so is X. It follows from Theorem 1.1 that $\pi_n^{Sp}(M_f, b_0) = \ker(\pi_n(M_f, b_0) \to \check{\pi}_n(M_f, b_0))$. In particular, the Spanier group of M_f contains all elements $[\alpha^k * g]$ where $g : S^n \to \mathbb{E}_n$ is a based map and $k \in \mathbb{Z}$. Using the universal covering map $E \to M_f$ that "unwinds" α and the relation $[g] = [\alpha * (f \circ g)]$ in $\pi_n(M_f, b_0)$, it is not hard to show that these are, in fact, the only elements of the *n*-th Spanier group. Hence

$$\ker(\pi_n(M_f, b_0) \to \check{\pi}_n(M_f, b_0)) = \{ [\alpha^k * g] \mid [g] \in \pi_n(\mathbb{E}_n, b_0) \},\$$

which is an uncountable subgroup.

It follows from this description that, even though M_f is not π_n -shape injective, M_f is *n*-homotopically Hausdorff. Indeed, it suffices to check this at the points $\alpha(t)$, $t \in I$. We give the argument for $\alpha(0) = b_0$, the other points are similar. If $0 \neq h \in \pi_n(M_f, b_0)$ has a representative in every neighborhood of b_0 in M_f , then clearly $h \in \ker(\Psi_n)$. Hence, $h = [\alpha^k * g]$ for $[g] \in \pi_n(\mathbb{E}_n, b_0)$. Since M_f retracts onto the circle parameterized by α^k , the hypothesis on h can only hold if k = 0. However, there is a basis of neighborhoods of b_0 in M_f that deformation retract onto an open neighborhood of b_0 in \mathbb{E}_n . Thus [g] has a representative in every neighborhood of b_0 in $\pi_n(\mathbb{E}_n, b_0)$, giving $h = [g] \in \ker(\pi_n(\mathbb{E}_n, b_0) \to \check{\pi}_n(\mathbb{E}_n, b_0)) = 0$. It is an important feature of Example 5.3 that M_f is not simply connected and has multiple points at which it is not semilocally π_n -trivial. This motivates the following application of Theorem 1.1, which identifies a partial converse of the implication π_n -shape injective $\Rightarrow n$ -homotopically Hausdorff.

Corollary 5.4. Let $n \ge 2$ and X be a simply-connected, UV^{n-1} , compact Hausdorff space such that X fails to be semilocally n-trivial only at a single point $x \in X$. Then every element $g \in \ker(\Psi_n)$ is represented by a map with image in every neighborhood of x. In particular, if X is n-homotopically Hausdorff at x, then X is π_n -shape injective.

Proof. According to Remark 3.5, we may take x to be the basepoint of X. Let $0 \neq g \in \ker(\Psi_n)$. By Theorem 1.1, $g \in \pi_n^{S_P}(X, x)$. Since X is compact Hausdorff, we may replace O(X) by the cofinal sub-directed order $O_F(X)$ consisting of finite open covers \mathscr{U} of X with the property that there is a unique $W_{\mathscr{U}} \in \mathscr{U}$ with $x \in W_{\mathscr{U}}$. For each $\mathscr{U} \in O_F(X)$, we can write $g = \prod_{i=1}^{m_{\mathscr{U}}} [\alpha_{\mathscr{U},i} * f_{\mathscr{U},i}]$ where $f_{\mathscr{U},i} : S^n \to U_{\mathscr{U},i}$ is a non-null-homotopic map for some $U_{\mathscr{U},i} \in \mathscr{U}$.

Let V be an open neighborhood of x. We check that g is represented by a map with image in V. Since X is UV^0 at x, there exists an open neighborhood V' of x such that any two points of V' may be connected by a path in V. Now, we fix $\mathscr{U}_0 \in O_F(X)$ such that $W_{\mathscr{U}_0} \subseteq V'$. Then $W_{\mathscr{V}} \subseteq V'$ whenever $\mathscr{V} \in O_F(X)$ refines \mathscr{U}_0 .

We claim that for sufficiently refined \mathscr{V} , all of the maps $f_{\mathscr{V},i}$ have image in V'. Suppose, to obtain a contradiction, there is a subset $T \subseteq \{\mathscr{V} \in O_F(X) \mid \mathscr{U}_0 \leq \mathscr{V}\}$, which is cofinal in $O_F(X)$ and such that for every $\mathscr{V} \in T$ there exists $i_{\mathscr{V}} \in \{1, 2, \ldots, m_{\mathscr{V}}\}$ such that $\operatorname{Im}(f_{\mathscr{V},i_{\mathscr{V}}}) \notin V'$. Find $y_{\mathscr{V},i_{\mathscr{V}}} \in S^n$ such that $f_{\mathscr{V},i_{\mathscr{V}}}(y_{\mathscr{V},i_{\mathscr{V}}}) \in U_{\mathscr{V},i} \setminus V' \subseteq U_{\mathscr{V},i} \setminus \mathscr{W}_{\mathscr{U}_0}$. Since X is compact, we may replace T with a cofinal directed subset so that the net $\{f_{\mathscr{V},i_{\mathscr{V}}}(y_{\mathscr{V},i_{\mathscr{V}}})\}_{\mathscr{V}\in T}$ converges to a point $y \in X$. Let Y be an open neighborhood $V_0 \in \mathscr{V}_0$ with $y \in V_0$ and which also satisfies $V_0 \subseteq Y$. Then $U_{\mathscr{V},i_{\mathscr{V}}} = V_0 \subseteq Y$. Moreover, if $\mathscr{V} \in T$ refines \mathscr{V}_0 , then $\operatorname{Im}(f_{\mathscr{V},i_{\mathscr{V}}}) \subseteq U_{\mathscr{V},i_{\mathscr{V}}} \subseteq V_0 \subseteq Y$. However, for every $\mathscr{V}, f_{\mathscr{V},i_{\mathscr{V}}}$ is not null-homotopic in X. Thus, since Y represents an arbitrary neighborhood of y, X is not semilocally π_n -trivial at y. By assumption, we must have x = y. Since $\{f_{\mathscr{V},i_{\mathscr{V}}}(y_{\mathscr{V},i_{\mathscr{V}}})\}_{\mathscr{V}\in T}$ converges to x, the same argument where V' replaces Y shows that $\operatorname{Im}(f_{\mathscr{V},i_{\mathscr{V}}}) \subseteq V'$ for sufficiently refined $\mathscr{V} \in T$; a contradiction. Since the claim is proved, there exists $\mathscr{U}_0 \leq \mathscr{U}_1$ in $O_F(X)$ such that whenever $\mathscr{U}_1 \leq \mathscr{V}$, we have $\operatorname{Im}(f_{\mathscr{V},i_{\mathscr{V}}) \subseteq V'$ for all $i \in \{1, 2, \ldots, m_{\mathscr{V}}\}$.

Fix a refinement \mathscr{V} of \mathscr{U}_1 in $O_F(X)$. For all $i \in \{1, 2, \ldots, m_{\mathscr{V}}\}$, we may find a path $\beta_{\mathscr{V},i} : I \to V$ from x to $f_{\mathscr{V},i}(d_0)$. Since g is simply connected, we have $[\alpha_{\mathscr{V},i} * f_{\mathscr{U},i}] = [\beta_{\mathscr{V},i} * f_{\mathscr{U},i}]$ for all i. Thus g is represented by $\prod_{i=1}^{m_{\mathscr{V}}} \beta_{\mathscr{V},i} * f_{\mathscr{V},i}$, which has image in V.

Remark 5.5 (Topologies on homotopy groups). Given a group G and a collection of subgroups $\{N_j \mid j \in J\}$ of G such that for all $j, j' \in J$, there exists $k \in J$ such that $N_k \subseteq N_j \cap N_{j'}$, we can generate a topology on G by taking the set

 $\{gN_j \mid j \in J, g \in G\}$ of left cosets as a basis. We can apply this to both the collection of Spanier subgroups $\pi_n^{Sp}(\mathscr{U}, x_0)$ and the collection of kernels ker $(p_{\mathscr{U}\#})$ to define two natural topologies on $\pi_n(X, x_0)$.

- (1) The Spanier topology on $\pi_n(X, x_0)$ is generated by the left cosets of Spanier groups $\pi_n(\mathscr{U}, x_0)$ for $\mathscr{U} \in O(X)$.
- (2) The shape topology on $\pi_n(X, x_0)$ is generated by left cosets of the kernels $\ker(p_{\mathscr{U}}_{\#})$ where $(\mathscr{U}, U_0) \in \Lambda$. Equivalently, the shape topology is the initial topology with respect to the map Ψ_n where the groups $\pi_n(|N(\mathscr{U})|, U_0)$ are given the discrete topology and $\check{\pi}_n(X, x_0)$ is given the inverse limit topology.

Lemma 3.10 ensures the Spanier topology is always finer than the shape topology. Lemma 5.1 then implies that, whenever X is paracompact, Hausdorff, and UV^{n-1} , the two topologies agree. Moreover, $\pi_n(X, x_0)$ is Hausdorff in the shape topology if and only if X is π_n -shape injective.

6 When is Ψ_n an isomorphism?

It is a result of Kozlowski-Segal [23] that if X is paracompact Hausdorff and UV^n , then $\Psi_n : \pi_n(X, x) \to \check{\pi}_n(X, x)$ is an isomorphism. This result was first proved for compact metric spaces in [24]. The assumption that X is UV^n assumes that small maps $S^n \to X$ may be contracted by small null-homotopies. However, if \mathbb{E}_n is the *n*-dimensional earring space, then the cone $C\mathbb{E}_n$ is UV^{n-1} but not UV^n . However, $C\mathbb{E}_n$ is contractible and so Ψ_n is clearly an isomorphism of trivial groups. Certainly, many other examples in this range exist. Our Spanier group-based approach allows us to generalize Kozlowski-Segal's theorem in a way that includes this example by removing the need for "small" homotopies in dimension n. For simplicity, we will sometimes suppress the pointedness of open covers and simply write \mathscr{U} for elements of Λ .

Lemma 6.1. Let $n \ge 1$. Suppose that X is paracompact, Hausdorff, and UV^{n-1} . If $([f_{\mathscr{U}}])_{\mathscr{U}\in\Lambda} \in \check{\pi}_1(X, x_0)$, then for every $\mathscr{U} \in \Lambda$, there exists $[g] \in \pi_n(X, x)$ such that $(p_{\mathscr{U}})_{\#}([g]) = [f_{\mathscr{U}}]$.

Proof. With $(\mathscr{U}, U_0) \in \Lambda$ and $p_{\mathscr{U}}$ fixed, consider a representing map $f_{\mathscr{U}} : (|\partial \Delta_{n+1}|, d_0) \to (|N(\mathscr{U})|, U_0)$. Let $\mathscr{U}' = \{p_{\mathscr{U}}^{-1}(\operatorname{st}(U, |N(\mathscr{U})|)) \mid U \in \mathscr{U}\}$. Since $p_{\mathscr{U}}^{-1}(\operatorname{st}(U, |N(\mathscr{U})|)) \subseteq U$ for all $U \in \mathscr{U}$, we have $\mathscr{U} \leq \mathscr{U}'$. Applying Lemmas 4.2 and 4.6 we can choose the following sequence of refinements of \mathscr{U}' . First, we choose a star refinement $\mathscr{U}' \leq_{**} \mathscr{W}$ so that for every $W \in \mathscr{W}$, there exists $U' \in \mathscr{U}'$ such that $\operatorname{St}(W, \mathscr{W}) \subseteq U'$. In this case, we can choose the projection map $p_{\mathscr{U}'\mathscr{W}} : |N(\mathscr{W})| \to |N(\mathscr{U}')|$ so that if $p_{\mathscr{U}'\mathscr{W}}(W) = U'$ on vertices, then $\operatorname{St}(W, \mathscr{W}) \subseteq U'$ in X. This choice will be important near the end of the proof.

To construct g, we must take further refinements. First, we choose a sequence of a refinements

$$\mathscr{W} = \mathscr{W}_n \leq_* \mathscr{V}_n \leq_*^{n-1} \mathscr{W}_{n-1} \leq_* \cdots \leq_*^2 \mathscr{W}_2 \leq_* \mathscr{V}_2 \leq_*^1 \mathscr{W}_1 \leq_* \mathscr{V}_1 \leq_*^0 \mathscr{W}_0$$

followed by one last refinement $\mathscr{W}_0 \leq_* \mathscr{V}_0 = \mathscr{V}$. Let $V_0 \in \mathscr{V}$ be any set containing x_0 and recall that since X is paracompact Hausdorff $(\mathscr{V}, V_0) \in \Lambda$. For some choice of canonical map $p_{\mathscr{V}}$, we have $p_{\mathscr{V}}^{-1}(\operatorname{st}(V, N(\mathscr{V}))) \subseteq V$ for all $V \in \mathscr{V}$.

Recall that we have assumed the existence of a map $f_{\mathscr{V}} : (\partial \Delta_{n+1}, d_0) \rightarrow (|N(\mathscr{V})|, V_0)$ such that $p_{\mathscr{U}\mathscr{V}\#}([f_{\mathscr{V}}]) = [f_{\mathscr{U}}]$. Set $Y_V = f_{\mathscr{V}}^{-1}(\operatorname{st}(V, N(\mathscr{V})))$ so that $\mathscr{Y} = \{Y_V \mid V \in \mathscr{V}\}$ is an open cover of $\partial \Delta_{n+1}$. As before, we find a simplicial approximation for $f_{\mathscr{V}}$. Find $m \in \mathbb{N}$ such that the star $\operatorname{st}(a, \operatorname{sd}^m \partial \Delta_{n+1})$ of each vertex a in $\operatorname{sd}^m \partial \Delta_{n+1}$ lies in a set $Y_{V_a} \in \mathscr{Y}$ for some $V_a \in \mathscr{V}$. Since $f_{\mathscr{V}}(d_0) = V_0$, we may take $V_{d_0} = V_0$. The assignment $a \mapsto V_a$ on vertices extends to a simplicial approximation $f' : \operatorname{sd}^m \partial \Delta_{n+1} \to |N(\mathscr{V})|$ of $f_{\mathscr{V}}$, i.e. a simplicial map f' such that

$$f_{\mathscr{V}}(\operatorname{st}(a, \operatorname{sd}^{m}\partial\Delta_{n+1})) \subseteq \operatorname{st}(f'(a), |N(\mathscr{V})|) = \operatorname{st}(V_{a}, |N(\mathscr{V})|)$$

for each vertex a.

We begin to define g with the constant map $\{d_0\} \to X$ sending d_0 to x_0 . In preparation for applications of Lemma 4.7, set $K = \operatorname{sd}^m \partial \Delta_{n+1}$ and $L = \{d_0\}$ so that $K[k] = K_k$. First, we define a map $g_0: M[0] \to X$ by picking, for each vertex $a \in K_0$, a point $g_0(a) \in V_a$. In particular, set $g_0(d_0) = x_0$. This choice is well defined since we have $p_{\mathscr{V}}(x_0) = V_0 \in \operatorname{st}(V_{d_0}, N(\mathscr{V}))$ and thus $g_0(d_0) = x_0 \in$ $p_{\mathscr{V}}^{-1}(\operatorname{st}(V_{d_0}, N(\mathscr{V}))) \subseteq V_{d_0}$. Note that f' maps every simplex $\sigma = [a_0, a_1, \ldots, a_k]$ of K to the simplex of $|N(\mathscr{V})|$ spanned by $\{V_{a_i} \mid 0 \leq i \leq k\}$. By definition of the nerve, we have $\bigcap\{V_{a_i} \mid 0 \leq i \leq k\} \neq \emptyset$. Pick a point $x_\sigma \in \bigcap\{V_{a_i} \mid 0 \leq i \leq k\}$. By our initial choice of refinements, we have $\mathscr{U}_0 \leq_* \mathscr{V}$. If $\sigma = [a_0, a_1, \ldots, a_n]$ is a n-simplex of K, then $\operatorname{St}(x_\sigma, \mathscr{V}) \subseteq U_{0,\sigma}$ for some $U_{0,\sigma} \in \mathscr{U}_0$. In particular $\{g_0(a_i) \mid 0 \leq i \leq n+1\} \subseteq \bigcup \{V_{a_i} \mid 0 \leq i \leq n\} \subseteq U_{0,\sigma}$. Thus g_0 maps the 0-skeleton of σ into $U_{0,\sigma}$. If $d_0 \in \sigma$, then $g_0(d_0) \in p_{\mathscr{V}}^{-1}(\operatorname{st}(V_{d_0}, N(\mathscr{V}))) \subseteq V_{d_0} \subseteq$ $U_{0,\sigma}$. Hence, for every n-simplex σ of K, we have $g_0(\sigma \cap M[0]) \subseteq U_{0,\sigma}$.

We are now in the situation to recursively apply Lemma 4.7. This is similar to the application in the proof of Lemma 5.1 with the dimension n + 1 shifted down by one so we omit the details. We obtain an extension $g: K = M[n] \to X$ of g_0 such that for every *n*-simplex σ of K, we have $g(\sigma) \subseteq W_{\sigma}$ for some $W_{\sigma} \in \mathcal{W} = \mathcal{U}_n$.

With g defined, we seek show that $f_{\mathscr{U}} \simeq p_{\mathscr{U}} \circ g$. Since $f' \simeq f_{\mathscr{V}}$ (by simplicial approximation), $p_{\mathscr{U}\mathscr{V}} \simeq p_{\mathscr{U}\mathscr{U}'} \circ p_{\mathscr{U}'\mathscr{W}} \circ p_{\mathscr{W}\mathscr{V}}$ (for any choice of projection maps), and $p_{\mathscr{U}\mathscr{V}} \circ f_{\mathscr{V}} \simeq f_{\mathscr{U}}$ (for any choice of projection $p_{\mathscr{U}\mathscr{V}}$), it suffices to show that $p_{\mathscr{U}\mathscr{U}'} \circ p_{\mathscr{U}'\mathscr{W}} \circ p_{\mathscr{W}} \circ of' \simeq p_{\mathscr{U}} \circ g$. We do this by proving that the simplicial map $F = p_{\mathscr{U}\mathscr{U}'} \circ p_{\mathscr{U}'\mathscr{W}} \circ p_{\mathscr{W}} \circ of' : K \to |N(\mathscr{U})|$ is a simplicial approximation for $p_{\mathscr{U}} \circ g$. Recall that this can be done by verifying the "star-condition" $p_{\mathscr{U}} \circ g(\operatorname{st}(a, K)) \subseteq \operatorname{st}(F(a), |N(\mathscr{U})|)$ for any vertex $a \in K$ [28, Ch.2 §14]. Since $n \ge 1$, we have $\mathscr{W} \leq_{**} \mathscr{V}$. Hence, just like our choice of $p_{\mathscr{U}'\mathscr{W}}$, we may choose $p_{\mathscr{W}\mathscr{V}}$ so that whenever $p_{\mathscr{W}\mathscr{V}}(V) = W$, then $\operatorname{St}(V, \mathscr{V}) \subseteq W$. Also, we choose $p_{\mathscr{U}\mathscr{U}'}$ to map $p_{\mathscr{U}}^{-1}(\operatorname{st}(U, |N(\mathscr{U})|)) \mapsto U$ on vertices.

Fix a vertex $a_0 \in K$. To check the star-condition, we'll check that $p_{\mathscr{U}} \circ g(\sigma) \subseteq$ st $(F(a_0), |N(\mathscr{U})|)$ for each *n*-simplex σ having a_0 as a vertex. Pick an *n*-simplex $\sigma = [a_0, a_1, \ldots, a_n] \subseteq K$ having a_0 as a vertex. Recall that $f'(a_i) = V_{a_i}$ for each *i*. Set $p_{\mathscr{W}\mathscr{V}}(V_{a_i}) = W_i$ and $p_{\mathscr{U}'\mathscr{W}}(W_i) = p_{\mathscr{U}}^{-1}(\operatorname{st}(U_i, |N(\mathscr{U})|)) \in \mathscr{U}'$ for some $U_i \in \mathscr{U}$. Then $F(a_i) = U_i$ for all *i*. It now suffices to check that $p_{\mathscr{U}} \circ g(\sigma) \subseteq \operatorname{st}(U_0, |N(\mathscr{U})|)$. Recall that by our choice of $p_{\mathscr{U}'\mathscr{W}}$, we have $\operatorname{St}(W_0, \mathscr{W}) \subseteq p_{\mathscr{U}}^{-1}(\operatorname{st}(U_0, |N(\mathscr{U})|))$. Thus it is enough to check that $g(\sigma) \subseteq \operatorname{St}(W_0, \mathscr{W})$. By construction of g, we have $g(\sigma) \subseteq W_\sigma$ for some $W_\sigma \in \mathscr{W}$. Since $g(a_0) \in W_0 \cap W_\sigma$, we have $g(\sigma) \subseteq W_\sigma \subseteq \operatorname{St}(W_0, \mathscr{W})$, completing the proof. \Box

Finally, we prove our secondary result, Theorem 1.2.

Proof of Theorem 1.2. Since X is paracompact, Hausdorff, UV^{n-1} , we have $\pi_n^{Sp}(X, x_0) = \ker(\Psi_n)$ by Theorem 1.1. Since X is semilocally π_n -trivial, we have $\pi_n^{Sp}(\mathscr{U}, x_0) = 1$ for some $\mathscr{U} \in \Lambda$. It follows that Ψ_n is injective. Moreover, by Lemma 5.1, we may find $\mathscr{V} \in \Lambda$ with $\ker(p_{\mathscr{V}\#}) \subseteq \pi_n^{Sp}(\mathscr{U}, x_0)$. Thus $p_{\mathscr{V}\#} : \pi_n(X, x_0) \to \pi_n(|N(\mathscr{V})|, V_0)$ is injective. Let $([f_{\mathscr{U}}])_{\mathscr{U} \in \Lambda} \in \check{\pi}_n(X, x_0)$. By Lemma 6.1, for each $\mathscr{U} \in \Lambda$, there exists $[g_{\mathscr{U}}] \in \pi_n(X, x_0)$ such that $p_{\mathscr{U}}([g_{\mathscr{U}}]) = [f_{\mathscr{U}}]$. If $\mathscr{V} \leq \mathscr{W}$, then we have

$$p_{\mathscr{V}\#}([g_{\mathscr{V}}]) = [f_{\mathscr{V}}] = p_{\mathscr{V}\#\#}([f_{\mathscr{W}}]) = p_{\mathscr{V}\#\#} \circ p_{\mathscr{W}\#}([g_{\mathscr{W}}]) = p_{\mathscr{V}\#}([g_{\mathscr{W}}])$$

Since $p_{\mathscr{V}\#}$ is injective, it follows that $[g_{\mathscr{W}}] = [g_{\mathscr{V}}]$ whenever $\mathscr{V} \leq \mathscr{W}$. Setting $[g] = [g_{\mathscr{V}}]$ gives $\Psi_n([g]) = ([f_{\mathscr{U}}])_{\mathscr{U} \in \Lambda}$. Hence, Ψ_n is surjective. \Box

7 Examples

Example 7.1. Fix $n \ge 2$. When X is a metrizable UV^{n-1} space, the cone CX and unreduced suspension SX are UV^{n-1} and semilocally π_n -trivial but need not be UV^n . This occurs in the case $X = \mathbb{E}_n$ or if $X = Y \vee \mathbb{E}_n$ where Y is a CW-complex. In such cases, $\Psi_n : \pi_n(SX) \to \check{\pi}_n(SX)$ is an isomorphism. One point unions of such cones and suspensions, e.g. $CX \vee CY$ or $CX \vee SY$ also meet the hypotheses of Theorem 1.2 (checking this is fairly technical [3]) but need not be UV^n .

Example 7.2. The converse of Theorem 1.2 does not hold. For $n \ge 2$, \mathbb{E}_n is UV^{n-1} but is not semilocally π_n -trivial at the wedgepoint x_0 . However, $\Psi_n : \pi_n(\mathbb{E}_n, x_0) \to \check{\pi}_n(\mathbb{E}_n, x_0)$ is an isomorphism where both groups are canonically isomorphic to $\mathbb{Z}^{\mathbb{N}}$ [12]. Additionally, for the infinite direct product $\prod_{\mathbb{N}} S^n$, $\Psi_k : \pi_k(\prod_{\mathbb{N}} S^n, x_0) \to \check{\pi}_k(\prod_{\mathbb{N}} S^n, x_0)$ is an isomorphism for all $k \ge 1$ even though $\prod_{\mathbb{N}} S^n$ is not UV^{k-1} when $k-1 \ge n$.

Example 7.3. We can also modify the mapping torus M_f from Example 5.3 so that Ψ_n becomes an isomorphism (recall that $n \ge 2$ is fixed). Let $X = M_f \cup C\mathbb{E}_n$ be the mapping cone of the inclusion $\mathbb{E}_n \to M_f$. For the same reason M_f is UV^{n-1} , the space X is UV^{n-1} . Moreover, if U is a neighborhood of $\alpha(t)$ that deformation retracts onto a homeomorphic copy of \mathbb{E}_n , then any map $S^n \to U$ may be freely homotoped "around" the torus and into the cone. It follows that X is semilocally π_n -trivial. We conclude from Theorem 1.2 that $\Psi_n : \pi_n(X) \to \check{\pi}_n(X)$ is an isomorphism. Since sufficiently fine covers of X

always give nerves homotopy equivalent to $S^1 \vee S^{n+1}$, we have $\check{\pi}_n(X, b_0) = 0$. Thus $\pi_n(X) = 0$.

Example 7.4. Let $n \ge 2$ and $X = \mathbb{E}_1 \lor S^n$ (see Figure 2). Note that because \mathbb{E}_1 is aspherical [6, 8], X is semilocally π_n -trivial. However, X is not UV^1 because it has \mathbb{E}_1 as a retract. It is shown in [3] that $\pi_n(X) \cong \bigoplus_{\pi_1(\mathbb{E}_1)} \pi_n(S^n) \cong \bigoplus_{\pi_1(\mathbb{E}_1)} \mathbb{Z}$ and that $\Psi_n : \pi_n(X) \to \check{\pi}_n(X)$ is injective. In particular, we may represent elements of $\pi_n(X)$ as finite-support sums $\sum_{\beta \in \pi_1(\mathbb{E}_1)} m_\beta$ where $m_\beta \in \mathbb{Z}$. We show that Ψ_n is not surjective.

Identify $\pi_1(X)$ with $\pi_1(\mathbb{E}_1)$ and recall from [9] that we can represent the elements of $\pi_1(\mathbb{E}_1)$ as countably infinite reduced words indexed by a countable linear order (with a countable alphabet $\beta_1, \beta_2, \beta_3, \ldots$). Here β_j is represented by a loop $S^1 \to \mathbb{E}_1$ going once around the *j*-th circle. Let X_j be the union of S^n and the largest *j* circles of \mathbb{E}_1 so that $X = \varprojlim_j X_j$. Identify $\pi_1(X_j)$ with the free group F_j on generators $\beta_1, \beta_2, \ldots, \beta_j$ and note that $\pi_n(X_j) \cong \bigoplus_{F_j} \mathbb{Z}$. Thus we may view an element of $\pi_n(X_j)$ as a finite-support sums $\sum_{w \in F_j} m_w$ of integers indexed over reduced words in F_j . Let $d_{j+1,j}: F_{j+1} \to F_j$ be the homomorphism that deletes the letter β_{j+1} . Consider the inverse limit $\check{\pi}_1(X) = \varprojlim_j (F_j, d_{j+1,j})$. The map $X \to X_j$ that collapses all but the first *j*-circles of \mathbb{E}_1 induces a homomorphism $d_j: \pi_1(X) \to F_j$. There is a canonical homomorphism $\phi: \pi_1(X) \to \check{\pi}_1(X) = \varprojlim_j (F_j, d_{j+1,j})$ given by $\phi(\beta) = (d_1(\beta), d_2(\beta), \ldots)$, which is known to be injective [27] but not surjective. For example, if $x_k = \prod_{j=1}^k [\beta_1, \beta_j]$, then $(x_1, x_2, x_3, x_4, \ldots)$ is an element of $\check{\pi}_1(X)$ not in the image of ϕ .

The bonding map $b_{j+1,j}: \pi_n(X_{j+1}) \to \pi_n(X_j)$ sends a sum $\sum_{w \in F_{j+1}} m_w$ to $\sum_{v \in F_j} p_v$ where $p_v = \sum_{d_{j+1,j}(w)=v} m_w$. Similarly, projection map $b_j: \pi_n(X) \to \pi_n(X_j)$ sends the sum $\sum_{\beta \in \pi_1(X)} n_\beta$ to $\sum_{v \in F_j} m_v$ where $m_v = \sum_{d_j(\beta)=v} m_\beta$. Let $y_j \in \pi_n(X)$ be the sum whose only non-zero coefficient is the x_j -coefficient, which is 1. Since $d_{j+1,j}(x_{j+1}) = x_j$, it's clear that $(y_1, y_2, y_3, \ldots) \in \check{\pi}_n(X)$. Suppose $\Psi_n(\sum_{\beta} m_{\beta}) = (y_1, y_2, y_3, \ldots)$. Writing $\sum_{\beta} m_\beta$ as a finite sum $\sum_{i=1}^r m_{\beta_i}$ for non-zero m_{β_i} , we must have $\sum_{d_j(\beta_i)=x_j} m_{\beta_i} = 1$ for all $j \in \mathbb{N}$. Since there are only finitely many β_i involved, there must exist at least one i for which $d_j(\beta_i) = x_j$ for infinitely many j. For such i, we have $\phi(\beta_i) = (x_1, x_2, x_3, \ldots)$, which, as mentioned above, is impossible. Hence Ψ_n is not surjective.

Figure 2: The one point union $\mathbb{E}_1 \vee S^2$.

The previous example shows why we cannot do away with the UV^{n-1} hypothesis in Theorem 1.2. Since we weakened the hypothesis from [23] in dimension n and no hypothesis in dimension n is required for Theorem 1.1, one might suspect that we might be able to do away with the dimension n hypothesis completely. The next example, which is a higher analogue of the harmonic archipelago [2, 7, 20] shows why this is not possible.

Example 7.5. Let $n \ge 2$ and $\ell_j : S^n \to \mathbb{E}_n$ be the inclusion of the *j*-th *n*-sphere in \mathbb{E}_n . Let X be the space obtained by attaching (n + 1)-cells to \mathbb{E}_n using the attaching maps ℓ_j . Since \mathbb{E}^n is UV^{n-1} it follows easily that X is UV^{n-1} . However, X is not semilocally π_n -trivial at the wedgepoint x_0 of \mathbb{E}^n . Indeed, the infinite concatenation maps $\prod_{j\ge k} \ell_j = \ell_k \cdot \ell_{k+1} \cdots$ are not null-homotopic (using a standard argument that works for the harmonic archipelago) but are all homotopic to each other. Thus $\pi_n(X, x_0) \ne 0$. However for sufficiently fine open covers $\mathscr{U} \in O(X)$, $|N(\mathscr{U})|$ is homotopy equivalent to a wedge of (n + 1)spheres and is therefore *n*-connected. Thus $\check{\pi}_n(X, b_0) = 0$. Thus, despite X being UV^{n-1} , Ψ_n is not an isomorphism. In fact, $\pi_n(X, x_0) = \pi_n^{Sp}(X, x_0) =$ $\ker(\Psi_n)$. The reader might also note that since \mathbb{E}^{n-1} is (n - 1)-connected and $\pi_n(\mathbb{E}_n) \cong H_n(\mathbb{E}_n) \cong \mathbb{Z}^{\mathbb{N}}$, X will also be (n - 1)-connected. A Meyer-Vietoris Sequence argument similar to that in [20] can then be used to show $\pi_n(X, x_0) \cong H_n(X) \cong \mathbb{Z}^{\mathbb{N}} / \oplus_{\mathbb{N}} \mathbb{Z}$.

References

- A. Akbar Bahredar, N. Kouhestani, H. Passandideh, *The n-dimensional Spanier group*, Filomat **35** (2021), no. 9, 3169-3182.
- [2] W. A. Bogley, A. J. Sieradski, Universal path spaces, Unpublished Preprint. 1998.
- [3] J. Brazas, Sequential n-connectedness and infinite factorization in higher homotopy groups, Preprint. (2021) arXiv:2103.13456.

- [4] J. Brazas, P. Fabel, *Thick Spanier groups and the first shape group*, Rocky Mountain J. Math. 44 (2014) 1415-1444.
- [5] J.W. Cannon, G.R. Conner, On the fundamental groups of one-dimensional spaces, Topology Appl. 153 (2006) 2648-2672.
- [6] J.W. Cannon, G.R. Conner, A. Zastrow, One-dimensional sets and planar sets are aspherical, Topology Appl. 120 (2002) 23-45.
- [7] G.R. Conner, W. Hojka, M. Meilstrup, Archipelago Groups, Proc. Amer. Math. Soc. 143 (2015), no. 11, 4973-4988.
- [8] M.L. Curtis, M.K. Fort, Jr., Homotopy groups of one-dimensional spaces, Proc. Amer. Math. Soc. 8 (1957), no. 3, 577-579.
- [9] K. Eda, Free σ-products and noncommutatively slender groups, J. of Algebra 148 (1992) 243-263.
- [10] K. Eda, K. Kawamura, The Surjectivity of the canonical homomorphism from singular homology to Čech Homology, Proc. Amer. Math. Soc. 128 (1999), no. 5, 1487-1495.
- [11] K. Eda, K. Kawamura, The fundamental groups of one-dimensional spaces, Topology Appl. 87 (1998) 163–172.
- [12] K. Eda, K. Kawamura, Homotopy and homology groups of the ndimensional Hawaiian earring, Fund. Math. 165 (2000) 17-28.
- [13] K. Eda, K. Kawamura, The asphericty of one-point unions of cones, Topology Proc. 36 (2010) 63-75.
- [14] K. Eda, U.H. Karmov, D. Repovš, A. Zastrow, On Snake cones, Alternating cones and related constructions, Glasnik Matematicki 48 (2013), no. 1, 115-135.
- [15] H. Fischer, C. Guilbault, On the fundamental groups of trees of manifolds, Pacific J. Math. 221 (2005) 49–79.
- [16] H. Fischer, D. Repovš, Z. Virk, and A. Zastrow, On semilocally simplyconnected spaces, Topology Appl. 158 (2011) 397–408.
- [17] H. Fischer, A. Zastrow, The fundamental groups of subsets of closed surfaces inject into their first shape groups, Algebraic and Geometric Topology 5 (2005) 1655-1676.
- [18] H. Fischer, A. Zastrow, Generalized universal covering spaces and the shape group, Fund. Math. 197 (2007) 167-196.
- [19] H. Ghane, Z. Hamed, n-Homotopically Hausdorff spaces, in: The 5th Seminar on Geometry and Topology Proceeding, 2009

- [20] U.H. Karimov, D. Repovš, On the homology of the harmonic archipelago, Central Europena J. Math. 10 (2012), no. 3, 863-872.
- [21] K. Kawamura, Low dimensional homotopy groups of suspensions of the Hawaiian earring, Colloq. Math. 96 (2003) no. 1 27-39.
- [22] G. Kozlowski, G. Segal, Locally well-behaved paracompact in shape theory, Fund. Math. 95 (1977) 55-71.
- [23] G. Kozlowski, G. Segal, Local behavior and the Vietoris and Whitehead theorems in shape theory, Fund. Math. 99 (1978) 213-225.
- [24] K. Kuperberg, Two Vietor-is-type isomorphism theorems in Borsuk's theory of shape, concerning the Vietoris-Čech homology and Borsuk's fundamental groups, in: Studies in Topology (Charlotte, NC, 1974), Academic Press, 1975, 285-313.
- [25] S. Mardešić, Comparison of singular and Cech homology in locally connected spaces, Michigan J. Math. 6 (1959), 151-166.
- [26] S. Mardešić, J. Segal, *Shape theory*, North-Holland Publishing Company, 1982.
- [27] J.W. Morgan, I.A. Morrison, A van Kampen theorem for weak joins. Proc. London Math. Soc. 53 (1986), no. 3, 562-576.
- [28] J.R. Munkres, *Elements of algebraic topology*, Addison-Wesley Publishing Co., Menlo Park, CA., 1984.
- [29] K. Sakai, Geometric aspects of general topology, Springer Japan, Tokyo, 2013.
- [30] E. Spanier, Algebraic Topology, McGraw-Hill, 1966.
- [31] A.H. Stone, Paracompactness and Product Spaces, Bull Amer. Math. Soc. 54 (1948) 977-982.
- [32] Z. Virk, 1-Dimensional intrinsic persistence of geodesic spaces, J. Topology and Analysis 12 (2020), no. 1, 169-207.
- [33] S. Willard, General Topology, Dover Publications, 2004.