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Abstract

When non-trivial local structures are present in a topological space X,
a common approach to characterizing the isomorphism type of the n-th
homotopy group πnpX,x0q is to consider the image of πnpX,x0q in the
n-th Čech homotopy group π̌npX,x0q under the canonical homomorphism
Ψn : πnpX,x0q Ñ π̌npX,x0q. The subgroup kerpΨnq is the obstruction to
this tactic as it consists of precisely those elements of πnpX,x0q, which
cannot be detected by polyhedral approximations to X. In this paper,
we use higher dimensional analogues of Spanier groups to characterize
kerpΨnq. In particular, we prove that if X is paracompact, Hausdorff,
and UV n´1, then kerpΨnq is equal to the n-th Spanier group of X. We
also use the perspective of higher Spanier groups to generalize a theo-
rem of Kozlowski-Segal, which gives conditions ensuring that Ψn is an
isomorphism.

1 Introduction

When non-trivial local structures are present in a topological space, a common
approach to characterizing the isomorphism type of πnpX,x0q is to consider the
image of πnpX,x0q in the n-th Čech (shape) homotopy group π̌npX,x0q under
the canonical homomorphism Ψn : πnpX,x0q Ñ π̌npX,x0q. The n-th shape
kernel kerpΨnq is the obstruction to this tactic as it consists of precisely those
elements of πnpX,x0q, which cannot be detected by polyhedral approximations
to X. This method has proved successful in many situations for both the fun-
damental group [5, 11, 15, 17] and higher homotopy groups [3, 12, 13, 14, 21].
In this paper, we study the map Ψn and give a characterization the n-th shape
kernel in terms of higher-dimensional analogues of Spanier groups.

The subgroups of fundamental groups, which are now commonly referred
to as “Spanier groups,” first appeared in E.H. Spanier’s unique approach to
covering space theory [30]. If U is an open cover of a topological space X and

x0 P X, then the Spanier group with respect to U is the subgroup πSp1 pU , x0q of
π1pX,x0q generated by path-conjugates rαsrγsrαs´1 where α is a path starting
at x0 and γ is a loop based at αp1q with image in some element of U . These
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subgroups are particularly relevant to covering space theory since, when X is
locally path-connected, a subgroup H ď π1pX,x0q corresponds to a covering

map p : pY, y0q Ñ pX,x0q if and only if πSp1 pU , x0q ď H for some open cover

U [30, 2.5.12]. The intersection πSp1 pX,x0q “
Ş

U πSp1 pU , x0q is called the

Spanier group of pX,x0q [16]. The inclusion πSp1 pX,x0q Ď kerpΨ1q always holds

[18, Prop. 4.8]. It is proved in [4, Theorem 6.1] that πSp1 pX,x0q “ kerpΨ1q

whenever X is paracompact Hausdorff and locally path connected. The upshot
of this equality is having a description of level-wise generators (for each open
cover U ) whereas there may be no readily available generating set for the kernel
of a homomorphism induced by a canonical map from X to the nerve |NpU q|.
Indeed, 1-dimensional Spanier groups have proved useful in persistence theory
[32]. Since much of applied topology is based on a geometric refinement of
polyhedral approximation from shape theory, there seems potential for higher
dimensional analogues to be useful as well.

Higher dimensional analogues of Spanier groups recently appeared in [1] and
are defined in a similar way: πSpn pU , x0q is the subgroup of πnpX,x0q consisting
of homotopy classes of path-conjugates α ˚ f where α is a path starting at x0

and f : Sn Ñ X is based at αp1q with image in some element of U . Then
πSpn pX,x0q is the intersection of these subgroups. In this paper, we prove a

higher-dimensional analogue of the 1-dimensional equality πSp1 pX,x0q “ kerpΨ1q

from [4].
A space X is UV n if for every neighborhood U of a point x P X, there is

a neighborhood V of x in U such that every map f : Sk Ñ V , 0 ď k ď n
is null-homotopic in U , c.f. [29]. When a space is UV n “small” maps on
spheres of dimension ď n contract by null-homotopies of relatively the same
size. Certainly, every locally n-connected space is UV n. However, when n ě 1,
the converse is not true even for metrizable spaces. Our main result is the
following.

Theorem 1.1. Let n ě 1 and x0 P X. If X is paracompact, Hausdorff, and
UV n´1, then πSpn pX,x0q “ kerpΨnq.

This result confirms that higher Spanier groups, like their 1-dimensional
counterparts, often identify precisely those elements of πnpX,x0q which can be
detected by polyhedral approximations to X. A first countable path-connected
space is UV 0 if and only if it is locally path connected. Hence, in dimension
n “ 1, Theorem 1.1 only expands [4, Theorem 6.1] to some non-first countable
spaces.

Regarding the proof of Theorem 1.1, the inclusion πSpn pX,x0q Ď kerpΨnq

was first proved for n “ 1 in [18, Prop. 4.8] and for n ě 2 in [1, Theorem
4.14]. We include this proof for the sake of completion (Lemma 3.11). The
proof of the inclusion kerpΨnq Ď πSpn pX,x0q appears in Section 5 and is more
intricate, requiring a carefully chosen sequence of open cover refinements using
the UV n´1 property. These refinements allow one to recursively extend maps
on simplicial complexes skeleton-wise. These extension methods, established in
Section 4, are similar to methods found in [22, 23].
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We also put these extension methods to work in Section 6 where we identify
conditions that imply Ψn is an isomorphism. In [23], Kozlowski-Segal prove
that if X is paracompact Hausdorff and UV n, then Ψn is an isomorphism. In
[18], Fischer and Zastrow generalize this result in dimension n “ 1 by replacing
“UV 1” with “locally path connected and semilocally simply connected.” Simi-
lar, to the approach of Fischer-Zastrow, our use of Spanier groups shows that
the existence of small null-homotopies of small maps Sn Ñ X (specifically in
dimension n) is not necessary to prove that Ψn is injective. We say a space X
is semilocally πn-trivial if for every x P X there exists an open neighborhood
U of x such that every map Sn Ñ U is null-homotopic in X. This definition is
independent of lower dimensions but certainly UV n ñ (UV n´1 and semilocally
πn-trivial). Our secondary result is the following.

Theorem 1.2. Let n ě 1 and x0 P X. If X is paracompact, Hausdorff, UV n´1,
and semilocally πn-trivial, then Ψn : πnpX,x0q Ñ π̌npX,x0q is an isomorphism.

The hypotheses in Theorem 1.2 are the homotopical versions of the hypothe-
ses used in [25] to ensure that the canonical homomorphism ϕ˚ : HnpXq Ñ
ȞnpXq is an isomorphism, see also [10] regarding the surjectivity of ϕ˚. Al-
though we have only weakened the hypothesis of the Kozlowksi-Segal result in
dimension n, Theorem 1.2 formally generalizes the results of both [18] and [22]
and does apply to some spaces of interest, namely spaces involving cones over (or
attached to) wild spaces (see Examples 7.1 and 7.3). Examples also show that
Ψn can fail to be an isomorphism if X is semilocally πn-trivial but not UV n´1

(Example 7.4) or if X is UV n´1 but not semilocally πn-trivial (Example 7.5).

2 Preliminaries and Notation

Throughout this paper, X is assumed to be a path-connected topological space
with basepoint x0. The unit interval is denoted I and Sn is the unit n-sphere
with basepoint d0 “ p1, 0, . . . , 0q. The n-th homotopy group of pX,x0q is de-
noted πnpX,x0q. If f : pX,x0q Ñ pY, y0q is a based map, then f# : πnpX,x0q Ñ

πnpY, y0q is the induced homomorphism.
A path in a space X is a map α : I Ñ X from the unit interval. The

reverse of α is the path given by α´ptq “ αp1 ´ tq and the concatenation of
two paths α, β with αp1q “ βp0q is denoted α ¨ β. Similarly, if f, g : Sn Ñ X
are maps based at x P X, then f ¨ g denotes the usual n-loop concatenation
and f´ denotes the reverse map. We may write

śm
i“1 fi to denote an m-fold

concatenation f1 ¨ f2 ¨ ¨ ¨ ¨ ¨ fm.

2.1 Simplicial complexes

We make heavy use of standard notation and theory of abstract and geometric
simplicial complexes, which can be found in texts such as [26] and [28]. We
briefly recall relevant notation.
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If K is an abstract or geometric simplicial complex and r ě 0 is an integer,
Kr denotes the r-skeleton of K. If K is abstract, |K| denotes the geometric
realization of K. If K is geometric, then sdmK denotes the m-th barycentric
subdivision of K and if v is a vertex of K, then stpv,Kq denotes the open
star of the vertex v. When L Ď K is a subcomplex, sdmL is a subcomplex of
sdmK. If σ “ tv0, v1, . . . , vru is an r-simplex of K, then rv0, v1, ..., vrs denotes
the r-simplex of |K| with the indicated orientation.

We frequently make use of the standard n-simplex ∆n in Rn spanned by the
origin d0 and standard unit vectors. Since the boundary B∆n “ ∆n “ p∆nqn´1

is homeomorphic to Sn´1, we fix a based homeomorphism B∆n – Sn´1 that
allows us to represent elements of πnpX,x0q by maps pB∆n`1, d0q Ñ pX,x0q.

2.2 The Čech expansion and shape homotopy groups

We now recall the construction of the first shape homotopy group π̌1pX,x0q via
the Čech expansion. For more details, see [26].

Let OpXq be the set of open covers of X direct by refinement; we write
U ĺ V when V refines U . Similarly, let OpX,x0q be the set of open covers
with a distinguished element containing the basepoint, i.e. the set of pairs
pU , U0q where U P OpXq, U0 P U , and x0 P U0. We say pV , V0q refines
pU , U0q if U ĺ V and V0 Ď U0.

The nerve of a cover pU , U0q P OpX,x0q is the abstract simplicial complex
NpU q whose vertex set is NpU q0 “ U and vertices A0, ..., An P U span an
n-simplex if

Şn
i“0Ai ‰ H. The vertex U0 is taken to be the basepoint of

the geometric realization |NpU q|. Whenever pV , V0q refines pU , U0q, we can
construct a simplicial map pU V : NpV q Ñ NpU q , called a projection, given by
sending a vertex V P NpV q to a vertex U P U such that V Ď U . In particular,
V0 must be sent to U0. Any such assignment of vertices extends linearly to a
simplicial map. Moreover, the induced map |pU V | : |NpV q| Ñ |NpU q| is unique
up to based homotopy. Thus the homomorphism pU V # : π1p|NpV q|, V0q Ñ

π1p|NpU q|, U0q induced on fundamental groups is (up to coherent isomorphism)
independent of the choice of simplicial map.

Recall that an open cover U of X is normal if it admits a partition of
unity subordinated to U . Let Λ be the subset of OpX,x0q (also directed by
refinement) consisting of pairs pU , U0q where U is a normal open cover of X
and such that there is a partition of unity tφUuUPU subordinated to U with
φU0

px0q “ 1. It is well-known that every open cover of a paracompact Hausdorff
space X is normal. Moreover, if pU , U0q P OpX,x0q, it is easy to refine pU , U0q

to a cover pV , V0q such that V0 is the only element of V containing x0 and
therefore pV , V0q P Λ. Thus, for paracompact Hausdorff X, Λ is cofinal in
OpX,x0q.

The n-th shape homotopy group is the inverse limit

π̌npX,x0q “ lim
ÐÝ

pπnp|NpU q|, U0q, pU V #,Λq .

This group is also referred to as the n-th Čech homotopy group.

4



Given an open cover pU , U0q P OpX,x0q, a map pU : X Ñ |NpU q| is a
(based) canonical map if p´1

U pstpU,NpU qqq Ď U for each U P U and pU px0q “

U0. Such a canonical map is guaranteed to exist if pU , U0q P Λ: find a locally
finite partition of unity tφUuUPU subordinated to U such that φU0

px0q “ 1.
When U P U and x P U , determine pU pxq by requiring its barycentric coor-
dinate belonging to the vertex U of |NpU q| to be φU pxq. According to this
construction, the requirement φU0px0q “ 1 gives pU px0q “ U0.

A canonical map pU is unique up to based homotopy and whenever pV , V0q

refines pU , U0q; the compositions pU V ˝ pV and pU are homotopic as based
maps. Hence, for n ě 1, the homomorphisms pU # : πnpX,x0q Ñ πnp|NpU q|, U0q

satisfy pU V #˝pV # “ pU #. These homomorphisms induce the following canon-
ical homomorphism to the limit, which is natural in X:

Ψn : πnpX,x0q Ñ π̌npX,x0q given by Ψnprf sq “ prpU ˝ f sq

The subgroup kerpΨnq, which we refer to as the n-th shape kernel is, in a
sense, a rough algebraic measure of the n-dimensional homotopical information
lost when approximating X by polyhedra. Specifically, rf s P πnpX,x0qz kerpΨnq

if and only if there exists some polyhedron K and map p : pX,x0q Ñ pK, k0q

such that p#prf sq ‰ 0 in πnpK, k0q. Of utmost important is the situation
when kerpΨnq “ 1. In this case, πnpX,x0q can be understood as a subgroup
of π̌npX,x0q, that is, the n-th shape group retains all the data in the n-th
homotopy group of X. A space for which kerpΨnq “ 1 is said to be πn-shape
injective.

3 Higher Spanier Groups

To define higher Spanier groups as in [1], we briefly recall the action of the fun-
damental groupoid on the higher homotopy groups of a space. Fix a retraction
R : SnˆI Ñ Snˆt0uYtd0uˆI. Given a map f : pSn, d0q Ñ pX, yq and a path
α : I Ñ X with αp0q “ x and αp1q “ y, define F : Sn ˆ t0u Y td0u ˆ I Ñ X so
that gpx, 0q “ fpxq and fpd0, tq “ αp1´ tq. The the path-conjugate of f by α is
the map α ˚ f : pSn, d0q Ñ pX,xq given by α ˚ fpxq “ F ˝Rpx, 0q.

Path-conjugation defines the basepoint-change isomorphism ϕα : πnpX, yq Ñ
πnpX,xq, ϕαprf sq “ rα ˚ f s. In particular, rα ˚ f srα ˚ gs “ rα ˚ pf ¨ gqs and if
rαs “ rβs, then rα ˚ f s “ rβ ˚ f s. Note that when n “ 1, f : S1 Ñ X is a loop
and α ˚ f » α ¨ f ¨ α´.

Definition 3.1. Let n ě 1 and α : pI, 0q Ñ pX,x0q be a path and U be an
open neighborhood of αp1q in X. Define

rαs ˚ πnpUq “ trα ˚ f s P πnpX,x0q | fpS
nq Ď Uu.

Since rα ˚ f srα ˚ gs “ rα ˚ pf ¨ gqs, the set rαs ˚ πnpUq is a subgroup of
πnpX,x0q.
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Definition 3.2. Let n ě 1, U be an open cover of X, and x0 P X. The
n-th Spanier group of pX,x0q with respect to U is the subgroup πSpn pU , x0q

of πnpX,x0q generated by the subgroups rαs ˚ πnpUq for all pairs pα,Uq with
αp1q P U and U P U . In short:

πSpn pU , x0q “ xrαs ˚ πnpUq | U P U , αp1q P Uy

The n-th Spanier group of pX,x0q is the intersection

πSpn pX,x0q “
č

U POpXq

πSpn pU , x0q.

Remark 3.3. We note that our definition of n-th Spanier group is the “un-
based” definition from [1]; see also [16] for more on “based” Spanier groups,
which is defined using covers of X by pointed open sets. The two notions agree
for locally path connected spaces. When n “ 1, Spanier groups (absolute and
relative to a cover) are normal subgroups of π1pX,x0q. Certainly, the same is
true for n ě 2 since higher homotopy groups are abelian. In the case n “ 1,
Spanier groups have been studied heavily due to their relationship to covering
space theory [30].

Remark 3.4 (Functorality). If f : pX,x0q Ñ pY, y0q is a map and V is an
open cover of Y , then U “ tf´1pV q | V P V u is an open cover of X such
that f#pπnpU , x0qq Ď πnpV , y0q. It follows that f#pπ

Sp
n pX,x0qq Ď πSpn pY, y0q.

Thus pf#q|πSpn pX,x0q
: πSpn pX,x0q Ñ πSpn pY, y0q is well-defined showing that

πSp1 : Top˚ Ñ Grp and πSpn : Top˚ Ñ Ab, n ě 2, are functors [1, Theo-
rem 4.2]. Moreover, if g : pY, y0q Ñ pX,x0q is a based homotopy inverse of f ,
then pf#q|πSpn pX,x0q

and pg#q|πSpn pY,y0q
are inverse isomorphisms. Hence, these

functors descend to functors hTop˚ Ñ Grp and hTop˚ Ñ Ab on the based
homotopy category.

Remark 3.5 (Basepoint invariance). Suppose x0, x1 P X and β : I Ñ X is
a path from x1 to x0, and ϕβ : πnpX,x0q Ñ πnpX,x1q, ϕβprgsq “ rβ ˚ gs is
the basepoint-change isomorphism. If rα ˚ f s is a generator of πSpn pU , x0q,
then ϕβprα ˚ f sq “ rpβ ¨ αq ˚ f s is a generator of πSpn pU , x1q. It follows
that ϕβpπ

Sp
n pU , x0qq “ πSpn pU , x1q. Moreover, in the absolute case, we have

ϕβpπ
Sp
n pX,x0qq “ πSpn pX,x1q. In particular, changing the basepoint of X does

not change the isomorphism type of the n-th Spanier group, particularly whether
it is trivial or not.

In terms of our choice of generators, a generic element of πSpn pU , x0q is a
product

śm
i“1rαi ˚ fis where each map fi : Sn Ñ X has an image in some open

set Ui P U (see Figure 1). The next lemma identifies how such products might
actually appear in practice and motivates the proof of our key technical Lemma
below (Lemma 5.1). Recall that psdm∆n`1qn is the union of the boundaries of
the pn` 1q-simplices in the m-th barycentric subdivision sdm∆n`1.
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Figure 1: An element of πSp2 pU , x0q, which is a product of three path-conjugate
generators rαi ˚ fis.

Lemma 3.6. If m,n P N, U is an open cover of X, and f : ppsdm∆n`1qn, d0q Ñ

pX,x0q is a map such that for every pn ` 1q-simplex σ of sdm∆n`1, we have
fpBσq Ď U for some U P U , then f#pπnppsdm∆n`1qn, d0qq Ď πSpn pU , x0q.

Proof. The case n “ 1 is proved in [4]. Suppose n ě 2 and set K “ sdm∆n`1.
The set W “ tf´1pUq | U P U u is an open cover ofKn such that f#pπ

Sp
n pW , d0qq Ď

πSpn pU , x0q and for every pn`1q-simplex σ in K, we have Bσ Ď f´1pUq for some
U P U . Thus it suffices to prove πSpn pW , d0q “ πnpKn, d0q. Let S be the set
of n-simplices of K. Since n ě 2, Kn is simply connected. Standard simpli-
cial homology arguments give that the reduced singular homology groups of
Kn are trivial in dimension ă n and HnpKnq is finitely generated free abelian
generated. A set of free generators for HnpKnq can be chosen by fixing the
homology class of a simplicial map gσ : B∆n`1 Ñ Kn that sends B∆n`1 home-
omorphically onto the boundary of an pn ` 1q-simplex of σ P S. Thus Kn is
pn´ 1q-connected and the Hurewicz homomorphism h : πkpKn, d0q Ñ HkpKnq

is an isomorphism for all 1 ď k ď n. In particular, let pσ : I Ñ Kn be any path
from d0 to gσpd0q. Then πnpKn, d0q is freely generated by the path-conjugates
rpσ ˚ gσs, σ P S. By assumption, for every σ P S, rpσ ˚ gσs is a generator of
πSpn pW , d0q. Since πSpn pW , d0q contains all the generators of πnpKn, d0q, the
equality πSpn pW , d0q “ πnpKn, d0q follows.

To characterize the triviality of relative Spanier groups, we establish the
following terminology.

Definition 3.7. Let n ě 0. We say a space X is
(1) semilocally πn-trivial at x P X if there exists an open neighborhood U of

X such that every map Sn Ñ U is null-homotopic in X.
(2) semilocally n-connected at x P X if there exists an open neighborhood U

of X such that every map Sk Ñ X, 0 ď k ď n is null-homotopic in X.
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We say X is semilocally πn-trivial (resp. semilocally n-connected) if it has this
property at all of its points.

It is straightforward to see that X is semilocally n-connected at x P X if
and only if X is semilocally πk-trivial for all 0 ď k ď n.

Remark 3.8. Note that a space X is semilocally πn-trivial if and only if X
admits an open cover U such that πSpn pU , x0q is trivial [1, Theorem 3.7]. More-
over, X is semilocally n-connected if and only if X admits an open cover U
such that πSpk pU , x0q is trivial for all 1 ď k ď n.

Attempting a proof of Theorem 1.1, one should not expect the groups
πSpn pU , x0q and kerppU #q to agree “on the nose.” Indeed, the following ex-
ample shows that we should not expect the equality πSpn pU , x0q “ kerppU #q to
hold even in the “nicest” local circumstances.

Example 3.9. Let X “ S2 _ S2 and W be a contractible neighborhood of
d0 in S2. Set U1 “ S2 _W and U2 “ W _ S2 and consider the open cover
U “ tU1, U2u of X. Then πSp3 pU , x0q – Z2 is freely generated by the homotopy
classes of the two inclusions i1, i2 : S2 Ñ X. However, π3pXq – Z3 is freely
generated by ri1s, ri2s, and the Whitehead product Ji1, i2K. However |NpU q|

is a 1-simplex and is therefore contractible. Thus kerppU #q is equal to π3pXq
and contains Ji1, i2K. Even though the spaces X,U1, U2 are locally contractible
and the elements of U are 1-connected, πSpn pU , x0q is a proper subgroup of
kerppU #q. One can view this failure as the result of two facts: (1) The sets Ui
are not 2-connected and (2) the definition of Spanier group does not allow one
to generate homotopy classes by taking Whitehead products of maps S2 Ñ Ui
in the neighboring elements of U .

First, we show the inclusion πSpn pX,x0q Ď kerpΨnq holds in full general-
ity. Recall the intersections πSpn pX,x0q “

Ş

U POpXq π
Sp
n pU , x0q and kerpΨnq “

Ş

pU ,U0qPΛ
kerppU #q are formally indexed by different sets.

Lemma 3.10. For every open cover U of X and canonical map pU : X Ñ

|NpU q|, there exists a refinement U ĺ V such that πSpn pV , x0q Ď kerppU #q in
πnpX,x0q.

Proof. Let U P OpXq. The stars stpU, |NpU q|q, U P U form an open cover
of |NpU q| and therefore V “ tp´1

U pstpU, |NpU q|qq | U P U u is an open cover
of X. Since pU is a canonical map, we have p´1

U pstpU, |NpU q|qq Ď U for all
U P U . Thus V is a refinement of U . A generator of πSpn pV , x0q is of the form
rα ˚ f s for a map f : Sn Ñ p´1

U pstpU, |NpU q|qq. However, pU ˝ f has image in
the contractible open set stpU, |NpU q|q and is therefore null-homotopic. Thus
pU #prα ˚ f sq “ 0. We conclude that pU #pπ

Sp
n pV , x0qq “ 0.

Corollary 3.11. [1, Theorem 4.14] Let n ě 1. For any based space pX,x0q, we
have πSpn pX,x0q Ď kerpΨnq.
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Proof. Suppose rf s P πSpn pX,x0q. Given a normal, based open cover pU , U0q P Λ
and any canonical map pU : X Ñ |NpU q|, Lemma 3.10 ensures we can find a
refinement U ĺ V such that πSpn pV , x0q Ď kerppU #q. Thus rf s P πSpn pV , x0q Ď

kerppU #q, which shows that rf s P kerpΨnq.

Example 3.12 (higher earring spaces). An important space, which we will call
upon repeatedly for examples, is the n-dimensional earring space

En “
ď

jPN

 

x P Rn`1 | }x´ p1{j, 0, 0, . . . , 0q} “ 1{j
(

,

which is a shrinking wedge (one-point union) of n-spheres with basepoint b0 “
p0, 0, . . . , 0q. It is known that En is pn´1q-connected, locally pn´1q-connected,
and πn-shape injective for all n ě 1 [27, 12]. However, En is not semilocally
πn-trivial. Thus πSpn pU , b0q ‰ 0 for any open cover U of En even though “in
the limit” πSpn pEn, b0q is trivial.

Example 3.13. Let n ě 3 and notice that E1 _ En is not semilocally π1-
connected (since it has E1 as a retract) and therefore fails to be semilocally
pn ´ 1q-connected. However, it has recently been shown that πkpE1 _ Enq “ 0
for 2 ď k ď n ´ 1 and that E1 _ En is πn-shape injective [3]. Thus E1 _ En is
semilocally πk-trivial for all k ď n ´ 1 except k “ 1 and πSpn pE1 _ En, b0q “ 0.
Thus the failure to be semilocally n-connected can occur at single dimension
less than n.

4 Recursive Extension Lemmas

Toward a proof of the inclusion kerpΨnq Ď πSpn pX,x0q, we introduce some
convenient notation and definitions. If U is an open cover and A Ď X,
then StpA,U q “

Ť

tU P U | A X U ‰ Hu. Note that if A Ď B, then
StpA,U q Ď StpB,U q. Also if U ĺ V , then StpA,V q Ď StpA,U q. We take the
following terminology from [33].

Definition 4.1. Let U ,V P OpXq.
(1) We say V is a barycentric-star refinement of U if for every x P X, we

have Stpx,V q Ď U for some U P U . We write U ĺ˚ V .
(2) We say V is a star refinement of U if for every V P V , we have StpV,V q Ď

U for some U P U . We write U ĺ˚˚ V .

Note that if U ĺ˚ V ĺ˚ W , then U ĺ˚˚ W .

Lemma 4.2. [31] A T1 space X is paracompact if and only if for every open
cover U of X there exists an open cover V such that U ĺ˚ V .

Definition 4.3. [29] Let n P t0, 1, 2, 3, . . . ,8u. A space X is UV n at x P X and
every neighborhood U of x, there exists a neighborhood V of x such that V Ď U
and such that for all 0 ď k ď n (k ă 8 if n “ 8), every map f : B∆k`1 Ñ V
extends to a map g : ∆k`1 Ñ U . We say X is UV n if X is UV n at all of its
points.
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We have the following evident implications for both the point-wise and global
properties:

X is locally n-connected ñ X is UV n ñ X is semilocally n-connected

For first countable spaces, the UV n property is equivalent to the “n-tame”
property in [3] defined in terms of shrinking sequences of maps.

Remark 4.4. In much of the Shape Theory literature, the UV n property is
referred to as the “LCn property” [26, p. 40]. This is sometimes confused
with local n-connectedness in which one has a basis of n-connected open sets.
Since the two are not equivalent even for Peano continua, we prefer the “UV n”
terminology.

Definition 4.5. Suppose U ĺ V in OpXq.
(1) We say V is an n-refinement of U , and write U ĺn V , if for all 1 ď k ď n,

V P V , and maps f : B∆k`1 Ñ V , there exists U P U with V Ď U and a
continuous extension g : ∆k`1 Ñ U of f .

(2) We say V is an n-barycentric-star refinement of U , and write U ĺn
˚ V ,

if for every 0 ď k ď n, for every x P X, and every map f : B∆k`1 Ñ

Stpx,V q, there exists U P U with Stpx,V q Ď U and a continuous exten-
sion g : ∆k`1 Ñ U of f .

Note that if U ĺn V (resp. U ĺn
˚ V ), then U ĺk V (resp. U ĺk

˚ V ) for
all 0 ď k ď n.

Lemma 4.6. Suppose X is paracompact, Hausdorff, and UV n. For every U P

OpXq, there exists V P OpXq such that U ĺn
˚ V .

Proof. Let U P OpXq. Since X is UV n, for every U P U and x P U , there
exists an open neighborhood W pU, xq such that W pU, xq Ď U and such that for
all 1 ď k ď n, each map f : B∆k`1 ÑW pU, xq extends to a map g : ∆k`1 Ñ U .
Let W “ tW pU, xq | U P U , x P Uu and note U ĺn W . Since X is paracompact
Hausdorff, by Lemma 4.2, there exists V P OpXq such that W ĺ˚ V .

Fix x1 P X. Then Stpx1,V q Ď W pU, xq for some x P U P U . Then
Stpx1,V q Ď U . Moreover, if 1 ď k ď n and f : B∆k`1 Ñ Stpx1,V q is a
map, then since f has image in W pU, xq, there is an extension g : ∆k`1 Ñ U .
This verifies that U ĺn

˚ V .

For the next two lemmas, we fix n P N, a geometric simplicial complex K
consisting of pn ` 1q-simplices and their faces, and a subcomplex L Ď K with
dimpLq ď n. Let M rks “ L YKk denote the union of L and the k-skeleton of
K. Since L Ď Kn, M rns “ Kn is the union of the boundaries of the pn ` 1q-
simplices of K. Later we will consider the cases where (1) K “ sdm∆n`1 and
L “ sdmB∆n`1 and (2) K “ sdmB∆n`2 and L “ td0u.

Lemma 4.7 (Recursive Extensions). Suppose 1 ď k ď n, U ĺ˚ V ĺ
k´1
˚ W ,

m P N, and f : M rk ´ 1s Ñ X is a map such that for every n ` 1-simplex σ
of K, we have fpσ XM rk ´ 1sq Ď Wσ for some Wσ P W . Then there exists a
continuous extension g : M rks Ñ X of f such that for every pn` 1q-simplex σ
of K, we have gpσ XM rksq Ď Uσ for some Uσ P U .
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Proof. Supposing the hypothesis, we must extend f to the k-simplices of M rks
that do not lie in L. Let τ be a k-simplex of M rks that does not lie in L and
let Sτ be the set of pn ` 1q-simplices in K that contain τ . By assumption,
Sτ is non-empty. We make some general observations first. Since f maps the
pk ´ 1q-skeleton of each pn ` 1q-simplex σ P Sτ into Wσ and Bτ lies in this
pk ´ 1q-skeleton, we have fpBτq Ď

Ş

σPSτ
Wσ. Thus, for all τ , we have

fpBτq Ď
č

σPSτ

StpWσ,V q.

Fix a vertex vτ of τ and let xτ “ fpvτ q. Then xτ P Wσ Ď Stpxτ ,W q

whenever σ P Sτ . Since V ĺ
k´1
˚ W , we may find Vτ P V such that Stpxτ ,W q Ď

Vτ and such that every map B∆k Ñ Stpxτ ,W q extends to a map ∆k Ñ Vτ . In
particular, f |Bτ : Bτ ÑWσ extends to a map τ Ñ Vτ . We define g : M rks Ñ X
so that it agrees with f on M rk ´ 1s and so that the restriction of g to τ is a
choice of continuous extension τ Ñ Vτ of f |Bτ .

We now choose the sets Uσ. Fix an pn`1q-simplex σ of K. If the k-skeleton
of σ lies entirely in L, we choose any Uσ P U satisfying Wσ Ď Uσ. Suppose there
exists at least one k-simplex in σ not in L. Then whenever τ is a k-simplex of σ
not in L, we have Wσ Ď Stpxτ ,W q Ď Vτ . Fix a point yσ PWσ. The assumption
that U ĺ˚ V implies that there exists Uσ P U such that Stpyσ,V q Ď Uσ. In
this case, we have Wσ Ď Vτ Ď Uσ whenever τ is a k-simplex of σ not in L.

Finally, we check that g satisfies the desired property. Again, fix an pn` 1q-
simplex σ of K. If τ is a k-simplex of σ not in L, our definition of g gives
gpτq Ď Vτ Ď Uσ. If τ 1 is a k-simplex in σ X L, then gpτ 1q “ fpτ 1q Ď Wσ Ď Uσ.
Overall, this shows that gpσXM rksq Ď Uσ for each pn` 1q-simplex σ of K.

A direct, recursive application of the previous lemma is given in the following
statement.

Lemma 4.8. Suppose there is a sequence of open covers

U “ Wn ĺ˚ Vn ĺn´1
˚ Wn´1 ĺ˚ ¨ ¨ ¨ ĺ2

˚ W2 ĺ˚ V2 ĺ1
˚ W1 ĺ˚ V1 ĺ0

˚ W0 “ W

and a map f0 : M r0s Ñ X such that for every pn ` 1q-simplex σ of K, we
have f0pσ X M r0sq Ď W for some W P W . Then there exists an extension
fn : M rns Ñ X of f0 such that for every pn ` 1q-simplex σ of K, we have
fnpBσq Ď U for some U P U .

5 A proof of Theorem 1.1

We apply the extension results of the previous section in the case where K “

sdm∆n`1 for some m P N and L “ sdmB∆n`1 so that M rks “ LYKk consists
of the boundary of ∆n`1 and the k-simplices of sdm∆n`1 not in the bound-
ary. Note that M rns is the union of the boundaries of the pn ` 1q-simplices of
sdm∆n`1.
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Lemma 5.1. Let n ě 1. Suppose X is paracompact, Hausdorff, and UV n´1.
Then for every open cover U of X, there exists pV , V0q P Λ such that kerppV #q Ď

πSpn pU , x0q.

Proof. Suppose U P OpXq. Since X is paracompact, Hausdorff, and UV n´1,
we may apply Lemmas 4.2 and 4.6 to first find a sequence of refinements :

U “ Un ĺ˚ Vn ĺn´1
˚ Un´1 ĺ˚ ¨ ¨ ¨ ĺ2

˚ U2 ĺ˚ V2 ĺ1
˚ U1 ĺ˚ V1 ĺ0

˚ U0

and then one last refinement U0 ĺ˚ V0 “ V . Let V0 P V be any set containing
x0 and recall that since X is paracompact Hausdorff pV , V0q P Λ. We will show
that kerppV #q Ď πSpn pU , x0q. Note that p´1

V pstpV,NpV qqq Ď V for some choice
of canonical map pV .

Suppose rf s P kerppV #q is represented by a map f : p|B∆n`1|, d0q Ñ pX,x0q.
We will show that rf s P πSpn pU , x0q. Then pV ˝ f : |B∆n`1| Ñ |NpV q|
is null-homotopic and extends to a map h : |∆n`1| Ñ |NpV q|. Set YV “

h´1pstpV,NpV qqq so that Y “ tYV | V P V u is an open cover of |∆n`1|.
We find a particular simplicial approximation for h using the cover Y [28,

Theorem 16.1]: let λ be a Lebesgue number for Y so that any subset of ∆n`1

of diameter less than λ lies in some element of Y . Find m P N such that each
simplex in sdm∆n`1 has diameter less than λ{2. Thus the star stpa, sdm∆n`1q of
each vertex a in sdm∆n`1 lies in a set YVa P Y for some Va P V . The assignment
a ÞÑ Va on vertices extends to a simplicial approximation h1 : sdm∆n`1 Ñ NpV q
of h, i.e. a simplicial map h1 such that

hpstpa, sdm∆n`1qq Ď stph1paq, NpV qq “ stpVa, NpV qq

for each vertex a [28, Lemma 14.1].
Let K “ sdm∆n`1 and L “ sdmB∆n`1 so that M rks “ L YKk. First, we

extend f : LÑ X to a map f0 : M r0s Ñ X. For each vertex a in K, pick a point
f0paq P Va. In particular, if a P L, take f0paq “ fpaq. This choice is well defined
since on boundary vertices a P L since we have pV ˝fpaq “ hpaq P stpVa, |NpV q|q
and thus fpaq P p´1

V pstpVa, |NpV |qqq Ď Va.
Note that h1 maps every simplex σ “ ra0, a1, . . . , aks of K to the simplex of

NpV q spanned by th1paiq | 0 ď i ď ku “ tVai | 0 ď i ď ku. By definition of the
nerve, we have

Ş

tVai | 0 ď i ď ku ‰ H. Pick a point xσ P
Ş

tVai | 0 ď i ď ku.
By our initial choice of refinements, we have U0 ĺ˚ V . If σ “ ra0, a1, . . . , an`1s

is an pn`1q-simplex of K, then Stpxσ,V q Ď Uσ for some Uσ P U . In particular
tf0paiq | 0 ď i ď n ` 1u Ď

Ť

tVai | 0 ď i ď n ` 1u Ď Uσ. Thus f0 maps the
0-skeleton of σ into Uσ. If 1 ď k ď n, τ is a k-face of σ X L with ai P τ , then
pV ˝ f0pintpτqq “ pV ˝ fpintpτqq “ hpintpτqq Ď hpstpai,Kqq Ď stpVai , |NpV q|q.
It follows that

f0pτq Ď p´1
V pstpVai , |NpV q|qq Ď Vai Ď Uσ.

Thus for every n-simplex in σ X L, we have f0pτq Ď Uσ. We conclude that for
every pn` 1q-simplex σ of K, we have f0pσ XM r0sq Ď Uσ.

By our choice of sequence of refinements, we are precisely in the situation
to apply Lemma 4.8. Doing so, we obtain an extension fn : M rns Ñ X of f
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such that for every pn ` 1q-simplex σ of K, we have fnpBσq Ď Uσ for some
Uσ P Un “ U . By Lemma 3.6, we have rf s “ rfn|B∆n`1s P π

Sp
n pU , x0q.

Finally, both inclusions have been established and provide a proof of our
main result.

Proof of Theorem 1.1. The inclusion πSpn pX,x0q Ď kerpΨnq holds in general by
Corollary 3.11. Under the given hypotheses, the inclusion kerpΨnq Ď πSpn pX,x0q

follows from Lemma 5.1.

When considering examples relevant to Theorem 1.1, it is helpful to compare
πn-shape injectivity with the following weaker property from [19].

Definition 5.2. We say a space X is n-homotopically Hausdorff at x P X if no
non-trivial element of πnpX,xq has a representing map in every neighborhood
of x. We say X is n-homotopically Hausdorff if it is n-homotopically Hausdorff
at all of its points.

Clearly, πn-shape injectivity ñ n-homotopically Hausdorff. The next exam-
ple, which highlights the effectiveness of Theorem 1.1, shows the converse is not
true even for UV n´1 Peano continua.

Example 5.3. Fix n ě 2 and let `j : Sn Ñ En be the inclusion of the j-th
sphere and define f : En Ñ En to be the shift map given by f ˝ `j “ `j`1. Let
Mf “ En ˆ r0, 1s{„, px, 0q „ pfpxq, 1q be the mapping torus of f . We identify
En with the image of En ˆ t0u in Mf and take b0 to be the basepoint of Mf .
Let α : I Ñ Mf be the loop where αptq is the image of pb0, tq. Then Mf is
locally contractible at all points other than those in the image of α. Also, every
point αptq has a neighborhood that deformation retracts onto a homeomorphic
copy of En. Thus, since En is UV n´1, so is X. It follows from Theorem 1.1
that πSpn pMf , b0q “ kerpπnpMf , b0q Ñ π̌npMf , b0qq. In particular, the Spanier
group of Mf contains all elements rαk ˚ gs where g : Sn Ñ En is a based map
and k P Z. Using the universal covering map E Ñ Mf that “unwinds” α and
the relation rgs “ rα ˚ pf ˝ gqs in πnpMf , b0q, it is not hard to show that these
are, in fact, the only elements of the n-th Spanier group. Hence

kerpπnpMf , b0q Ñ π̌npMf , b0qq “ trα
k ˚ gs | rgs P πnpEn, b0qu,

which is an uncountable subgroup.
It follows from this description that, even though Mf is not πn-shape in-

jective, Mf is n-homotopically Hausdorff. Indeed, it suffices to check this
at the points αptq, t P I. We give the argument for αp0q “ b0, the other
points are similar. If 0 ‰ h P πnpMf , b0q has a representative in every neigh-
borhood of b0 in Mf , then clearly h P kerpΨnq. Hence, h “ rαk ˚ gs for
rgs P πnpEn, b0q. Since Mf retracts onto the circle parameterized by αk, the
hypothesis on h can only hold if k “ 0. However, there is a basis of neighbor-
hoods of b0 in Mf that deformation retract onto an open neighborhood of b0
in En. Thus rgs has a representative in every neighborhood of b0 in πnpEn, b0q,
giving h “ rgs P kerpπnpEn, b0q Ñ π̌npEn, b0qq “ 0.
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It is an important feature of Example 5.3 that Mf is not simply connected
and has multiple points at which it is not semilocally πn-trivial. This motivates
the following application of Theorem 1.1, which identifies a partial converse of
the implication πn-shape injective ñ n-homotopically Hausdorff.

Corollary 5.4. Let n ě 2 and X be a simply-connected, UV n´1, compact
Hausdorff space such that X fails to be semilocally n-trivial only at a single point
x P X. Then every element g P kerpΨnq is represented by a map with image in
every neighborhood of x. In particular, if X is n-homotopically Hausdorff at x,
then X is πn-shape injective.

Proof. According to Remark 3.5, we may take x to be the basepoint of X. Let
0 ‰ g P kerpΨnq. By Theorem 1.1, g P πSpn pX,xq. Since X is compact Hausdorff,
we may replace OpXq by the cofinal sub-directed order OF pXq consisting of
finite open covers U of X with the property that there is a unique WU P U
with x PWU . For each U P OF pXq, we can write g “

śmU

i“1 rαU ,i ˚fU ,is where
fU ,i : Sn Ñ UU ,i is a non-null-homotopic map for some UU ,i P U .

Let V be an open neighborhood of x. We check that g is represented by a
map with image in V . Since X is UV 0 at x, there exists an open neighborhood
V 1 of x such that any two points of V 1 may be connected by a path in V . Now,
we fix U0 P OF pXq such that WU0

Ď V 1. Then WV Ď V 1 whenever V P OF pXq
refines U0.

We claim that for sufficiently refined V , all of the maps fV ,i have image in
V 1. Suppose, to obtain a contradiction, there is a subset T Ď tV P OF pXq |
U0 ĺ V u, which is cofinal in OF pXq and such that for every V P T there exists
iV P t1, 2, . . . ,mV u such that ImpfV ,iV q Ę V 1. Find yV ,iV P Sn such that
fV ,iV pyV ,iV q P UV ,izV

1 Ď UV ,izWU0
. Since X is compact, we may replace T

with a cofinal directed subset so that the net tfV ,iV pyV ,iV quV PT converges to
a point y P X. Let Y be an open neighborhood of y in X. Find V0 P OF pXq
such that there exists a unique neighborhood V0 P V0 with y P V0 and which
also satisfies V0 Ď Y . Then UV0,iV0

“ V0 Ď Y . Moreover, if V P T refines
V0, then ImpfV ,iV q Ď UV ,iV Ď V0 Ď Y . However, for every V , fV ,iV is not
null-homotopic in X. Thus, since Y represents an arbitrary neighborhood of
y, X is not semilocally πn-trivial at y. By assumption, we must have x “ y.
Since tfV ,iV pyV ,iV quV PT converges to x, the same argument where V 1 replaces
Y shows that ImpfV ,iV q Ď V 1 for sufficiently refined V P T ; a contradiction.
Since the claim is proved, there exists U0 ĺ U1 in OF pXq such that whenever
U1 ĺ V , we have ImpfV ,iq Ď V 1 for all i P t1, 2, . . . ,mV u.

Fix a refinement V of U1 in OF pXq. For all i P t1, 2, . . . ,mV u, we may find
a path βV ,i : I Ñ V from x to fV ,ipd0q. Since g is simply connected, we have
rαV ,i ˚ fU ,is “ rβV ,i ˚ fU ,is for all i. Thus g is represented by

śmV

i“1 βV ,i ˚ fV ,i,
which has image in V .

Remark 5.5 (Topologies on homotopy groups). Given a group G and a collec-
tion of subgroups tNj | j P Ju of G such that for all j, j1 P J , there exists k P J
such that Nk Ď Nj X Nj1 , we can generate a topology on G by taking the set
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tgNj | j P J, g P Gu of left cosets as a basis. We can apply this to both the col-
lection of Spanier subgroups πSpn pU , x0q and the collection of kernels kerppU #q

to define two natural topologies on πnpX,x0q.
(1) The Spanier topology on πnpX,x0q is generated by the left cosets of Spanier

groups πnpU , x0q for U P OpXq.
(2) The shape topology on πnpX,x0q is generated by left cosets of the kernels

kerppU #q where pU , U0q P Λ. Equivalently, the shape topology is the ini-
tial topology with respect to the map Ψn where the groups πnp|NpU q|, U0q

are given the discrete topology and π̌npX,x0q is given the inverse limit
topology.

Lemma 3.10 ensures the Spanier topology is always finer than the shape topol-
ogy. Lemma 5.1 then implies that, whenever X is paracompact, Hausdorff, and
UV n´1, the two topologies agree. Moreover, πnpX,x0q is Hausdorff in the shape
topology if and only if X is πn-shape injective.

6 When is Ψn an isomorphism?

It is a result of Kozlowski-Segal [23] that if X is paracompact Hausdorff and
UV n, then Ψn : πnpX,xq Ñ π̌npX,xq is an isomorphism. This result was
first proved for compact metric spaces in [24]. The assumption that X is UV n

assumes that small maps Sn Ñ X may be contracted by small null-homotopies.
However, if En is the n-dimensional earring space, then the cone CEn is UV n´1

but not UV n. However, CEn is contractible and so Ψn is clearly an isomorphism
of trivial groups. Certainly, many other examples in this range exist. Our
Spanier group-based approach allows us to generalize Kozlowksi-Segal’s theorem
in a way that includes this example by removing the need for “small” homotopies
in dimension n. For simplicity, we will sometimes suppress the pointedness of
open covers and simply write U for elements of Λ.

Lemma 6.1. Let n ě 1. Suppose that X is paracompact, Hausdorff, and
UV n´1. If prfU sqU PΛ P π̌1pX,x0q, then for every U P Λ, there exists rgs P
πnpX,xq such that ppU q#prgsq “ rfU s.

Proof. With pU , U0q P Λ and pU fixed, consider a representing map fU :
p|B∆n`1|, d0q Ñ p|NpU q|, U0q. Let U 1 “ tp´1

U pstpU, |NpU q|qq | U P U u. Since
p´1

U pstpU, |NpU q|qq Ď U for all U P U , we have U ĺ U 1. Applying Lemmas
4.2 and 4.6 we can choose the following sequence of refinements of U 1. First,
we choose a star refinement U 1 ĺ˚˚ W so that for every W P W , there exists
U 1 P U 1 such that StpW,W q Ď U 1. In this case, we can choose the projection
map pU 1W : |NpW q| Ñ |NpU 1q| so that if pU 1W pW q “ U 1 on vertices, then
StpW,W q Ď U 1 in X. This choice will be important near the end of the proof.

To construct g, we must take further refinements. First, we choose a sequence
of a refinements

W “ Wn ĺ˚ Vn ĺn´1
˚ Wn´1 ĺ˚ ¨ ¨ ¨ ĺ2

˚ W2 ĺ˚ V2 ĺ1
˚ W1 ĺ˚ V1 ĺ0

˚ W0
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followed by one last refinement W0 ĺ˚ V0 “ V . Let V0 P V be any set containing
x0 and recall that since X is paracompact Hausdorff pV , V0q P Λ. For some
choice of canonical map pV , we have p´1

V pstpV,NpV qqq Ď V for all V P V .
Recall that we have assumed the existence of a map fV : pB∆n`1, d0q Ñ

p|NpV q|, V0q such that pU V #prfV sq “ rfU s. Set YV “ f´1
V pstpV,NpV qqq so

that Y “ tYV | V P V u is an open cover of B∆n`1. As before, we find a
simplicial approximation for fV . Find m P N such that the star stpa, sdmB∆n`1q

of each vertex a in sdmB∆n`1 lies in a set YVa P Y for some Va P V . Since
fV pd0q “ V0, we may take Vd0 “ V0. The assignment a ÞÑ Va on vertices extends
to a simplicial approximation f 1 : sdmB∆n`1 Ñ |NpV q| of fV , i.e. a simplicial
map f 1 such that

fV pstpa, sd
m
B∆n`1qq Ď stpf 1paq, |NpV q|q “ stpVa, |NpV q|q

for each vertex a.
We begin to define g with the constant map td0u Ñ X sending d0 to x0. In

preparation for applications of Lemma 4.7, set K “ sdmB∆n`1 and L “ td0u

so that Krks “ Kk. First, we define a map g0 : M r0s Ñ X by picking, for each
vertex a P K0, a point g0paq P Va. In particular, set g0pd0q “ x0. This choice is
well defined since we have pV px0q “ V0 P stpVd0 , NpV qq and thus g0pd0q “ x0 P

p´1
V pstpVd0 , NpV qqq Ď Vd0 . Note that f 1 maps every simplex σ “ ra0, a1, . . . , aks

of K to the simplex of |NpV q| spanned by tVai | 0 ď i ď ku. By definition of the
nerve, we have

Ş

tVai | 0 ď i ď ku ‰ H. Pick a point xσ P
Ş

tVai | 0 ď i ď ku.
By our initial choice of refinements, we have U0 ĺ˚ V . If σ “ ra0, a1, . . . , ans
is a n-simplex of K, then Stpxσ,V q Ď U0,σ for some U0,σ P U0. In particular
tg0paiq | 0 ď i ď n ` 1u Ď

Ť

tVai | 0 ď i ď nu Ď U0,σ. Thus g0 maps the
0-skeleton of σ into U0,σ. If d0 P σ, then g0pd0q P p

´1
V pstpVd0 , NpV qqq Ď Vd0 Ď

U0,σ. Hence, for every n-simplex σ of K, we have g0pσ XM r0sq Ď U0,σ.
We are now in the situation to recursively apply Lemma 4.7. This is similar

to the application in the proof of Lemma 5.1 with the dimension n ` 1 shifted
down by one so we omit the details. We obtain an extension g : K “M rns Ñ X
of g0 such that for every n-simplex σ of K, we have gpσq Ď Wσ for some
Wσ P W “ Un.

With g defined, we seek show that fU » pU ˝g. Since f 1 » fV (by simplicial
approximation), pU V » pU U 1 ˝pU 1W ˝pW V (for any choice of projection maps),
and pU V ˝ fV » fU (for any choice of projection pU V ), it suffices to show
that pU U 1 ˝ pU 1W ˝ pW V ˝ f 1 » pU ˝ g. We do this by proving that the
simplicial map F “ pU U 1 ˝ pU 1W ˝ pW V ˝ f 1 : K Ñ |NpU q| is a simplicial
approximation for pU ˝ g. Recall that this can be done by verifying the “star-
condition” pU ˝ gpstpa,Kqq Ď stpF paq, |NpU q|q for any vertex a P K [28, Ch.2
§14]. Since n ě 1, we have W ĺ˚˚ V . Hence, just like our choice of pU 1W , we
may choose pW V so that whenever pW V pV q “ W , then StpV,V q Ď W . Also,
we choose pU U 1 to map p´1

U pstpU, |NpU q|qq ÞÑ U on vertices.
Fix a vertex a0 P K. To check the star-condition, we’ll check that pU ˝gpσq Ď

stpF pa0q, |NpU q|q for each n-simplex σ having a0 as a vertex. Pick an n-simplex
σ “ ra0, a1, . . . , ans Ď K having a0 as a vertex. Recall that f 1paiq “ Vai for
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each i. Set pW V pVaiq “Wi and pU 1W pWiq “ p´1
U pstpUi, |NpU q|qq P U 1 for some

Ui P U . Then F paiq “ Ui for all i. It now suffices to check that pU ˝ gpσq Ď
stpU0, |NpU q|q. Recall that by our choice of pU 1W , we have StpW0,W q Ď

p´1
U pstpU0, |NpU q|qq. Thus it is enough to check that gpσq Ď StpW0,W q. By

construction of g, we have gpσq ĎWσ for some Wσ P W . Since gpa0q PW0XWσ,
we have gpσq ĎWσ Ď StpW0,W q, completing the proof.

Finally, we prove our secondary result, Theorem 1.2.

Proof of Theorem 1.2. Since X is paracompact, Hausdorff, UV n´1, we have
πSpn pX,x0q “ kerpΨnq by Theorem 1.1. Since X is semilocally πn-trivial, we
have πSpn pU , x0q “ 1 for some U P Λ. It follows that Ψn is injective. More-
over, by Lemma 5.1, we may find V P Λ with kerppV #q Ď πSpn pU , x0q. Thus
pV # : πnpX,x0q Ñ πnp|NpV q|, V0q is injective. Let prfU sqU PΛ P π̌npX,x0q.
By Lemma 6.1, for each U P Λ, there exists rgU s P πnpX,x0q such that
pU prgU sq “ rfU s. If V ĺ W , then we have

pV #prgV sq “ rfV s “ pV W #prfW sq “ pV W # ˝ pW #prgW sq “ pV #prgW sq

Since pV # is injective, it follows that rgW s “ rgV s whenever V ĺ W . Setting
rgs “ rgV s gives Ψnprgsq “ prfU sqU PΛ. Hence, Ψn is surjective.

7 Examples

Example 7.1. Fix n ě 2. When X is a metrizable UV n´1 space, the cone CX
and unreduced suspension SX are UV n´1 and semilocally πn-trivial but need
not be UV n. This occurs in the case X “ En or if X “ Y _ En where Y is a
CW-complex. In such cases, Ψn : πnpSXq Ñ π̌npSXq is an isomorphism. One
point unions of such cones and suspensions, e.g. CX _ CY or CX _ SY also
meet the hypotheses of Theorem 1.2 (checking this is fairly technical [3]) but
need not be UV n.

Example 7.2. The converse of Theorem 1.2 does not hold. For n ě 2, En is
UV n´1 but is not semilocally πn-trivial at the wedgepoint x0. However, Ψn :
πnpEn, x0q Ñ π̌npEn, x0q is an isomorphism where both groups are canonically
isomorphic to ZN [12]. Additionally, for the infinite direct product

ś

N S
n,

Ψk : πkp
ś

N S
n, x0q Ñ π̌kp

ś

N S
n, x0q is an isomorphism for all k ě 1 even

though
ś

N S
n is not UV k´1 when k ´ 1 ě n.

Example 7.3. We can also modify the mapping torus Mf from Example 5.3
so that Ψn becomes an isomorphism (recall that n ě 2 is fixed). Let X “

Mf YCEn be the mapping cone of the inclusion En ÑMf . For the same reason
Mf is UV n´1, the space X is UV n´1. Moreover, if U is a neighborhood of
αptq that deformation retracts onto a homeomorphic copy of En, then any map
Sn Ñ U may be freely homotoped “around” the torus and into the cone. It
follows that X is semilocally πn-trivial. We conclude from Theorem 1.2 that
Ψn : πnpXq Ñ π̌npXq is an isomorphism. Since sufficiently fine covers of X
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always give nerves homotopy equivalent to S1 _ Sn`1, we have π̌npX, b0q “ 0.
Thus πnpXq “ 0.

Example 7.4. Let n ě 2 and X “ E1_S
n (see Figure 2). Note that because E1

is aspherical [6, 8], X is semilocally πn-trivial. However, X is not UV 1 because it
has E1 as a retract. It is shown in [3] that πnpXq –

À

π1pE1q
πnpS

nq –
À

π1pE1q
Z

and that Ψn : πnpXq Ñ π̌npXq is injective. In particular, we may represent
elements of πnpXq as finite-support sums

ř

βPπ1pE1q
mβ where mβ P Z. We

show that Ψn is not surjective.
Identify π1pXq with π1pE1q and recall from [9] that we can represent the

elements of π1pE1q as countably infinite reduced words indexed by a countable
linear order (with a countable alphabet β1, β2, β3, . . . ). Here βj is represented
by a loop S1 Ñ E1 going once around the j-th circle. Let Xj be the union of Sn

and the largest j circles of E1 so that X “ lim
ÐÝj

Xj . Identify π1pXjq with the free

group Fj on generators β1, β2, . . . βj and note that πnpXjq –
À

Fj
Z. Thus we

may view an element of πnpXjq as a finite-support sums
ř

wPFj
mw of integers

indexed over reduced words in Fj . Let dj`1,j : Fj`1 Ñ Fj be the homomorphism
that deletes the letter βj`1. Consider the inverse limit π̌1pXq “ lim

ÐÝj
pFj , dj`1,jq.

The map X Ñ Xj that collapses all but the first j-circles of E1 induces a
homomorphism dj : π1pXq Ñ Fj . There is a canonical homomorphism φ :
π1pXq Ñ π̌1pXq “ lim

ÐÝj
pFj , dj`1,jq given by φpβq “ pd1pβq, d2pβq, . . . q, which is

known to be injective [27] but not surjective. For example, if xk “
śk
j“1rβ1, βjs,

then px1, x2, x3, x4, . . . q is an element of π̌1pXq not in the image of φ.
The bonding map bj`1,j : πnpXj`1q Ñ πnpXjq sends a sum

ř

wPFj`1
mw to

ř

vPFj
pv where pv “

ř

dj`1,jpwq“v
mw. Similarly, projection map bj : πnpXq Ñ

πnpXjq sends the sum
ř

βPπ1pXq
nβ to

ř

vPFj
mv where mv “

ř

djpβq“v
mβ . Let

yj P πnpXq be the sum whose only non-zero coefficient is the xj-coefficient,
which is 1. Since dj`1,jpxj`1q “ xj , it’s clear that py1, y2, y3, . . . q P π̌npXq.
Suppose Ψnp

ř

βmβq “ py1, y2, y3, . . . q. Writing
ř

βmβ as a finite sum
řr
i“1mβi

for non-zero mβi , we must have
ř

djpβiq“xj
mβi “ 1 for all j P N. Since there

are only finitely many βi involved, there must exist at least one i for which
djpβiq “ xj for infinitely many j. For such i, we have φpβiq “ px1, x2, x3, . . . q,
which, as mentioned above, is impossible. Hence Ψn is not surjective.
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Figure 2: The one point union E1 _ S
2.

The previous example shows why we cannot do away with the UV n´1 hy-
pothesis in Theorem 1.2. Since we weakened the hypothesis from [23] in di-
mension n and no hypothesis in dimension n is required for Theorem 1.1, one
might suspect that we might be able to do away with the dimension n hypoth-
esis completely. The next example, which is a higher analogue of the harmonic
archipelago [2, 7, 20] shows why this is not possible.

Example 7.5. Let n ě 2 and `j : Sn Ñ En be the inclusion of the j-th n-sphere
in En. Let X be the space obtained by attaching pn ` 1q-cells to En using the
attaching maps `j . Since En is UV n´1 it follows easily that X is UV n´1.
However, X is not semilocally πn-trivial at the wedgepoint x0 of En. Indeed,
the infinite concatenation maps

ś

jěk `j “ `k ¨ `k`1 ¨ ¨ ¨ are not null-homotopic
(using a standard argument that works for the harmonic archipelago) but are
all homotopic to each other. Thus πnpX,x0q ‰ 0. However for sufficiently fine
open covers U P OpXq, |NpU q| is homotopy equivalent to a wedge of pn` 1q-
spheres and is therefore n-connected. Thus π̌npX, b0q “ 0. Thus, despite X
being UV n´1, Ψn is not an isomorphism. In fact, πnpX,x0q “ πSpn pX,x0q “

kerpΨnq. The reader might also note that since En´1 is pn ´ 1q-connected
and πnpEnq – HnpEnq – ZN, X will also be pn ´ 1q-connected. A Meyer-
Vietoris Sequence argument similar to that in [20] can then be used to show
πnpX,x0q – HnpXq – ZN{ ‘N Z.
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