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Abstract. If k is set equal to aq in the definition of a WP Bailey pair,

βn(a, k) =

nX
j=0

(k/a)n−j(k)n+j

(q)n−j(aq)n+j
αj(a, k),

this equation reduces to βn =
Pn

j=0 αj .
This seemingly trivial relation connecting the αn’s with the βn’s has

some interesting consequences, including several basic hypergeometric
summation formulae, a connection to the Prouhet-Tarry-Escott prob-
lem, some new identities of the Rogers-Ramanujan-Slater type, some
new expressions for false theta series as basic hypergeometric series,
and new transformation formulae for poly-basic hypergeometric series.

1. Introduction

We begin by recalling a construction of Andrews [1]. If a pair of sequences
(αn(a, k), βn(a, k)) satisfy

(1.1) βn(a, k) =
n∑

j=0

(k/a)n−j(k)n+j

(q)n−j(aq)n+j
αj(a, k),

then so does the pair (α′n(a, k), β′n(a, k)), where

α′n(a, k) =
(ρ1, ρ2)n

(aq/ρ1, aq/ρ2)n

(
k

c

)n

αn(a, c),(1.2)

β′n(a, k) =
(kρ1/a, kρ2/a)n

(aq/ρ1, aq/ρ2)n

×
n∑

j=0

(1− cq2j)(ρ1, ρ2)j(k/c)n−j(k)n+j

(1− c)(kρ1/a, kρ2/a)n(q)n−j(qc)n+j

(
k

c

)j

βj(a, c),

with c = kρ1ρ2/aq. A pair of sequences satisfying (1.1) is termed a WP-
Bailey pair. If k = 0, the pair of sequences become what is termed a Bailey
pair relative to a.
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Bailey [4, 5] used the q-Gauss sum,

(1.3) 2φ1(a, b; c; q, c/ab) =
(c/a, c/b; q)∞
(c, c/ab; q)∞

,

to get that, if (αn, βn) are a Bailey pair relative to a, then
(1.4)
∞∑

n=0

(y, z; q)n

(
aq

yz

)n

βn =
(aq/y, aq/z; q)∞
(aq, aq/yz; q)∞

∞∑

n=0

(y, z; q)n

(aq/y, aq/z; q)n

(
x

yz

)n

αn.

Slater, in [21] and [22], subsequently used this transformation of Bailey
to derive 130 identities of the Rogers-Ramanujan type.

The first major variations in Bailey’s construct at (1.4) appear to be due
to Bressoud [7]. Another variation was given by Singh in [20]. All of these
variations were put in a more formal setting by Andrews in [1], where he
introduced the generalization of the standard Bailey pair defined above.

In the same paper Andrews also described a second way to construct a new
WP-Bailey pair from a given pair. These two constructions allowed a “tree”
of WP-Bailey pairs to be generated from a single WP-Bailey pair. These
two branches of the WP-Bailey tree were further investigated by Andrews
and Berkovich in [2]. Spiridonov [23] derived an elliptic generalization of
Andrews first WP-Bailey chain, and Warnaar [25] added four new branches
to the WP-Bailey tree, two of which had generalizations to the elliptic level.
More recently, and motivated in part by the papers above, Liu and Ma [14]
introduced the idea of a general WP-Bailey chain (as a solution to a system
of linear equations), and added one new branch to the WP-Bailey tree.

As we might expect, Andrews generalization of a Bailey pair leads to a
generalization of (1.4). Indeed Andrews WP-Bailey chain at (1.2) can easily
be shown to imply the following result (substitute the expression for α′n(a, k)
in (1.1), set the two expressions for β′n(a, k) equal, and let n → ∞). Note
that setting k = 0 recovers Bailey’s transformation at (1.4). (We initially
derived (1.6) in a way similar to Bailey’s derivation of (1.4), before realizing
that it followed from Andrews’ construction (1.2).)

Theorem 1. Under suitable convergence conditions, if (αn(a, k), βn(a, k))
satisfy

(1.5) βn(a, k) =
n∑

j=0

(k/a)n−j(k)n+j

(q)n−j(aq)n+j
αj(a, k),

then

(1.6)
∞∑

n=0

(1− kq2n)(ρ1, ρ2; q)n

(1− k)(kq/ρ1, kq/ρ2; q)n

(
aq

ρ1ρ2

)n

βn(a, k) =

(kq, kq/ρ1ρ2, aq/ρ1, aq/ρ2; q)∞
(kq/ρ1, kq/ρ2, aq/ρ1ρ2, aq; q)∞

∞∑

n=0

(ρ1, ρ2; q)n

(aq/ρ1, aq/ρ2; q)n

(
aq

ρ1ρ2

)n

αn(a, k).
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In the present paper we investigate what at first glance may appear to be
a trivial special case of Theorem 1.

Corollary 1. If βn =
∑n

r=0 αr, then assuming both series converge,
(1.7)
∞∑

n=0

(q
√

xyz,−q
√

xyz, y, z; q)nxnβn

(
√

xyz,−√xyz, qxy, qxz; q)n
=

(1− xy) (1− xz)
(1− x) (1− xyz)

∞∑

n=0

(y, z; q)nxnαn

(xy, xz; q)n
.

Proof. Let k = xyz, a = xyz/q, ρ1 = y and ρ2 = z in Theorem 1. ¤

This seemingly trivial relation connecting the αn’s with the βn’s has some
interesting consequences, including several basic hypergeometric summation
formulae, a connection to the Prouhet-Tarry-Escott problem, some new iden-
tities of the Rogers-Ramanujan-Slater type, some new expressions for false
theta series as basic hypergeometric series, and new transformation formulae
for poly-basic hypergeometric series.

We employ the usual notations. Let a and q be complex numbers, with
|q| < 1 unless otherwise stated. Then

(a)0 = (a; q)0 := 1, (a)n = (a; q)n :=
n−1∏

j=0

(1− aqj), for n ∈ N,

(a1; q)n(a2; q)n . . . (ak; q)n = (a1, a2, . . . , ak; q)n,

(a; q)∞ :=
∞∏

j=0

(1− aqj),

(a1; q)∞(a2; q)∞ . . . (ak; q)∞ = (a1, a2, . . . , ak; q)∞.

An rφs basic hypergeometric series is defined by

rφs

[
a1, a2, . . . , ar

b1, . . . , bs
; q, x

]
=

∞∑

n=0

(a1; q)n(a2; q)n . . . (ar; q)n

(q; q)n(b1; q)n . . . (bs; q)n

(
(−1)nqn(n−1)/2

)s+1−r
xn.

For future use we also recall the q-binomial theorem,

(1.8)
∞∑

n=0

(a; q)n

(q; q)n
zn =

(az; q)∞
(z; q)∞

.

2. Various Summation Formulae for Basic Hypergeometric
series

We next derive a number of transformation formulae for basic hyperge-
ometric series, transformations that give rise to summation formulae for
particular choices of the parameters.
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Corollary 2. For q and x inside the unit disc,

(2.1)
∞∑

n=0

(q
√

xyz,−q
√

xyz, y, z; q)2nx2n

(
√

xyz,−√xyz, qxy, qxz; q)2n

=
(1− xy) (1− xz)
(1− x) (1− xyz)

∞∑

n=0

(y, z; q)n(−x)n

(xy, xz; q)n
.

(2.2)
∞∑

n=0

(1− q2n+1/x)(q/x2; q)2nx2n

(q; q)2n+1
=

1
1 + x

(q/x; q)∞
(x; q)∞

, x 6= 0.

Proof. In Corollary 1 let αr = (−1)r to get (2.1). Then set y = q/x,
z = q/x2, apply (1.8) to the right side, replace x by −x and (2.2) follows. ¤

Corollary 3. For q and x inside the unit disc,

(2.3)
∞∑

n=0

(q
√

xyz,−q
√

xyz, y, z; q)nxn(n + 1)
(
√

xyz,−√xyz, qxy, qxz; q)n

=
(1− xy) (1− xz)
(1− x) (1− xyz)

∞∑

n=0

(y, z; q)nxn

(xy, xz; q)n
.

(2.4)
∞∑

n=0

(1 + qn+1/x)(q/x2; q)nxn(n + 1)
(q; q)n+1

=
1

1− x

(q/x; q)∞
(x; q)∞

.

Proof. Set αn = 1 in Corollary 1 to get (2.3). The identity at (2.4) follows
from (2.3) upon setting y = q/x2, z = q/x, using (1.8) to sum the right side
and then simplifying. ¤

Corollary 4. For q, x and u all inside the unit disc,

(2.5)
∞∑

n=0

(1 + qn+1/x)(q/x2; q)nxn(1− un+1)
(q; q)n+1

=
1− u

1− x

(qu/x; q)∞
(xu; q)∞

.

Proof. Set αn = un, y = q/x and z = q/x2. Now apply the q-binomial
theorem (1.8) to the right side. ¤

Corollary 5.
(2.6)

5φ4

[
q
√

xyz,−q
√

xyz, y, z, cq√
xyz,−√xyz, qxy, qxz

; q, x
]

=
(1− xy)(1− xz)
(1− x)(1− xyz) 3φ2

[
y, z, c
xy, xz

; q, xq

]
.

(2.7) 3φ2

[−qxy, y, x
−xy, qx2y

; q, x
]

=
1

1 + xy

(x2, qxy; q)∞
(qx2y, x; q)∞

.
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Proof. We define α0 = 1, and for n > 0,

αn =
(cq; q)n

(q; q)n
− (cq; q)n−1

(q; q)n−1
=

(c; q)n

(q; q)n
qn.

Substitution into (1.7) immediately gives (2.6). Equation (2.7) follows upon
letting c = x/q, z = xy and using (1.3) to sum the resulting right side and
simplifying. ¤

3. Transformation Formulae for basic- and polybasic
Hypergeometric Series

In contrast to the situation with basic hypergeometric series, most (pos-
sibly all) summation formulae for poly-basic hypergeometric series arise be-
cause the series involved telescope. This means that the terms in such an
identity may be inserted in (1.7) to produce a transformation formula for
polybasic hypergeometric series containing an additional base. Setting all
the bases equal to qm, for some integer m, then gives a transformation for-
mula for basic hypergeometric series. We give one example in the next
corollary, which contains a transformation formula connecting polybasic hy-
pergeometric series with five independent bases.

Corollary 6. Let P , p, Q, q, R and x all lie inside the unit disc, and let
a, b, c, y and z be complex numbers such that the denominators below are
bounded away from zero. Then

(3.1)
∞∑

n=0

(q
√

xyz,−q
√

xyz, y, z; q)n

(
√

xyz,−√xyz, qxy, qxz; q)n

(ap2; p2)n

(
bP 2;P 2

)
n(

PQR
p ; PQR

p

)
n

(
apPQ

cR ; pPQ
R

)
n

×
(cR2; R2)n

(
aQ2

bc ; Q2
)

n(
apQR

bP ; pQR
P

)
n

(
bcpPR

Q ; pPR
Q

)
n

xn

=
(1− xy) (1− xz)
(1− x) (1− xyz)

×

∞∑

n=0

(y, z; q)n

(xy, xz; q)n

(1− apnPnQnRn)
(
1− b pnP n

QnRn

)(
1− P nQn

cpnRn

)(
1− apnQn

bcP nRn

)

(1− a)(1− b)
(
1− 1

c

) (
1− a

bc

)

× (a; p2)n

(
b; P 2

)
n(

PQR
p ; PQR

p

)
n

(
apPQ

cR ; pPQ
R

)
n

(c; R2)n

(
a
bc ; Q

2
)
n(

apQR
bP ; pQR

P

)
n

(
bcpPR

Q ; pPR
Q

)
n

(xR2)n;

(3.2)
∞∑

n=0

(q
√

xyz,−q
√

xyz, y, z; q)n

(
√

xyz,−√xyz, qxy, qxz; q)n

(aqm, bqm, cqm, aqm

bc ; qm)n(
a
c qm, a

b qm, bcqm, qm; qm
)
n

xn

=
(1− xy) (1− xz)
(1− x) (1− xyz)

×
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∞∑

n=0

(y, z; q)n

(xy, xz; q)n

(qm√a,−qm√a, a, b, c, a
bc ; q

m)n(√
a,−√a, a

c qm, a
b qm, bcqm, qm; qm

)
n

(xqm)n.

Proof. We use the special case m = 0, d = 1 of the identity of Subbarao and
Verma labeled (2.2) in [24], namely,

(3.3)
n∑

k=0

(
1− apkP kQkRk

) (
1− b pkP k

QkRk

)(
1− P kQk

cpkRk

)(
1− apkQk

bcP kRk

)

(1− a)(1− b)
(
1− 1

c

) (
1− a

bc

)

× (a; p2)k

(
b;P 2

)
k(

PQR
p ; PQR

p

)
k

(
apPQ

cR ; pPQ
R

)
k

(c; R2)k

(
a
bc ; Q

2
)
k(

apQR
bP ; pQR

P

)
k

(
bcpPR

Q ; pPR
Q

)
k

R2k

=
(ap2; p2)n

(
bP 2; P 2

)
n

(cR2; R2)n

(
aQ2

bc ; Q2
)

n(
PQR

p ; PQR
p

)
n

(
apPQ

cR ; pPQ
R

)
n

(
apQR

bP ; pQR
P

)
n

(
bcpPR

Q ; pPR
Q

)
n

,

and then in (1.7) let αi be the i-th term in the sum above, and let βn be
the quantity on the right side above.

The identity at (3.2) follows upon setting P = Q = p = R = qm/2 and
simplifying. ¤

4. A Connection with the Prouhet-Tarry-Escott Problem

We begin with a simple example.

Corollary 7.

(4.1) 6φ5

[
q
√

xyz,−q
√

xyz, y, z, aq, bq√
xyz,−√xyz, qxy, qxz, abq

; q, x
]

=
(1− xy)(1− xz)
(1− x)(1− xyz) 4φ3

[
y, z, a, b

xy, xz, abq
; q, xq

]
.

Proof. This time, in Corollary 1, define α0 = 1, and for n > 0,

αn =
(aq, bq; q)n

(abq, q; q)n
− (aq, bq; q)n−1

(abq, q; q)n−1
=

(a, b; q)nqn

(abq, q; q)n
.

The result follows as above. ¤

The telescoping approach used in Corollary 7 can be generalized in one
direction. We have the following result.

Proposition 1. Let x, y and q be complex numbers with |x|, |q| < 1. Sup-
pose a1, a2, . . . , am are non-zero complex numbers and let b1, b2, . . . , bm−1

satisfy

(4.2) (z − 1)
m−1∏

i=1

(z − bi) =
m∏

i=1

(z − ai)−
m∏

i=1

(1− ai).
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Suppose further that bi 6= 0, for 1 ≤ i ≤ m− 1. Then

(4.3) m+4φm+3

[
q
√

xyz, −q
√

xyz, y, z, a1q, . . . , am−1q, amq√
xyz, −√xyz, qxy, qxz, b1q, . . . , bm−1q

; q, x

]

=
(1− xy)(1− xz)
(1− x)(1− xyz) m+2φm+1

[
y, z, a1, . . . , am−1, am

xy, xz, b1q, . . . , bm−1q
; q, xqm

]
.

Proof. Define α0 = 1, and for n ≥ 1, set

αn =
(a1q, a2q, . . . , am−1q, amq; q)n

(b1q, b2q, . . . , bm−1q, q; q)n
− (a1q, a2q, . . . , am−1q, amq; q)n−1

(b1q, b2q, . . . , bm−1q, q; q)n−1
.

By (4.2),

αn =
(a1, a2, . . . , am−1, am; q)n

(b1q, b2q, . . . , bm−1q, q; q)n
qmn

and clearly

(4.4) βn =
n∑

r=0

αr =
(a1q, a2q, . . . , am−1q, amq; q)n

(b1q, b2q, . . . , bm−1q, q; q)n
.

The result follows from Corollary 1. ¤

The fundamental theorem of algebra guarantees that there is no shortage
of sets of complex numbers a1, a2, . . . , am, b1, b2, . . . , bm−1 satisfying (4.2),
but for m > 4 it is still a problem to find explicit examples. However, a
related problem in number theory provides solutions for m ≤ 10 and m = 12.

The Prouhet-Tarry-Escott problem asks for two distinct multisets of in-
tegers A = {a1, ..., am} and B = {b1, ..., bm} such that

(4.5)
m∑

i=1

ae
i =

m∑

i=1

be
i , for e = 1, 2, . . . , k,

for some integer k < m. If k = m − 1, such a solution is called ideal. We
write

(4.6) {a1, ..., am} k= {b1, ..., bm}
to denote a solution to the Prouhet-Tarry-Escott problem.

The connection between the Prouhet-Tarry-Escott problem and the prob-
lem mentioned above is contained in the following proposition (see [6], page
2065).

Proposition 2. The multisets A = {a1, ..., am} and B = {b1, ..., bm} form
an ideal solution to the Prouhet-Tarry-Escott problem if and only if

m∏

i=1

(z − ai)−
m∏

i=1

(z − bi) = C,

for some constant C.
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Note that the fact that bm = 1 is not a problem, since if

{a1, ..., am} m−1= {b1, ..., bm},
then

{Ma1 + K, ..., Mam + K} m−1= {Mb1 + K, ..., Mbm + K},
for constants M and K (see Lemma 1 in [8], for example).

Parametric ideal solutions are known for m = 1, . . . , 8 and particular nu-
merical solutions are known for m = 9, 10 and 12. Although every ideal
solution to the Prouhet-Tarry-Escott problem gives rise to a transforma-
tion between basic hypergeometric series, we will consider just one example.
Note also that it is not necessary, for our purposes, that the ai’s and bi’s
be integers. As above, we assume x, y and q are complex numbers, with
|x|, |q| < 1.

Corollary 8. Let m and n be non-zero complex numbers. Set

a1 = −3m2 + 7nm− 2n2 + 1, b1 = −3m2 + 8nm + n2 + 1,(4.7)

a2 = −2m2 + 8nm + 2n2 + 1, b2 = −2m2 + 3nm− 3n2 + 1,

a3 = −m2 − n2 + 1, b3 = −m2 + 10nm− n2 + 1,

a4 = 2m2 + 3nm + n2 + 1, b4 = 2m2 + 2nm− 2n2 + 1,

a5 = m2 + 2nm− 3n2 + 1, b5 = m2 + 7nm + 2n2 + 1,

a6 = 10mn + 1.

Then

(4.8) 10φ9

[
q
√

xyz, −q
√

xyz, y, z, a1q, a2q, a3q, a4q, a5q, a6q√
xyz, −√xyz, qxy, qxz, b1q, b2q, b3q, b4q, b5q

; q, x

]

=
(1− xy)(1− xz)
(1− x)(1− xyz) 8φ7

[
y, z, a1, a2, a3, a4, a5, a6

xy, xz, b1q, b2q, b3q, b4q, b5q
; q, xq6

]
.

Proof. We have from page 629–30 and Lemma 1 in [8], that if

a1 = −5m2 + 4nm− 3n2 + K, b1 = −5m2 + 6nm + 3n2 + K,(4.9)

a2 = −3m2 + 6nm + 5n2 + K, b2 = −3m2 − 4nm− 5n2 + K,

a3 = −m2 − 10nm− n2 + K, b3 = −m2 + 10nm− n2 + K,

a4 = 5m2 − 4nm + 3n2 + K, b4 = 5m2 − 6nm− 3n2 + K,

a5 = 3m2 − 6nm− 5n2 + K, b5 = 3m2 + 4nm + 5n2 + K,

a6 = m2 + 10nm + n2 + K, b6 = m2 − 10nm + n2 + K,

then
{a1, a2, a3, a4, a5, a6} 5= {b1, b2, b3, b4, b5, b6}.

We set b6 = 1, solve for K and back-substitute in (4.9). We then replace
m by m/

√
2 and n by n/

√
2. This leads to the values for the ai’s and bi’s

given at (4.7) and the result follows, as before, from Proposition 1. ¤
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We also note each ideal solution to the Prouhet-Tarry-Escott problem
leads to an infinite summation formula, upon letting n → ∞ in (4.4). We
give one example.

Corollary 9. Let m be a non-zero complex number. Set

{ai}12
i=1 = {1 + 170m, 1 + 126m, 1 + 209m, 1 + 87m, 1 + 234m, 1 + 62m,

1 + 275m, 1 + 21m, 1 + 288m, 1 + 8m, 1 + 299m, 1− 3m},

{bi}11
i=1 = {1 + 183m, 1 + 113m, 1 + 195m, 1 + 101m, 1 + 242m, 1 + 54m,

1 + 269m, 1 + 27m, 1 + 294m, 1 + 2m, 1 + 296m}.
Then

(4.10) 12φ11

[
a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12

b1q, b2q, b3q, b4q, b5q, b6q, b7q, b9q, b10q, b11q
; q, q12

]
.

=
(a1q, a2q, a3q, a4q, a5q, a6q, a7q, a8q, a9q, a10q, a11q, a12q; q)∞

(b1q, b2q, b3q, b4q, b5q, b6q, b7q, b9q, b10q, b11q, q; q)∞

Proof. We use a result of Nuutti Kuosa, Jean-Charles Meyrignac and Chen
Shuwen (see [19]), namely, that if

A = {K + 22m,K − 22m,K + 61m,K − 61m, K + 86m, K − 86m,

(4.11)

K + 127m,K − 127m,K + 140m,K − 140m,K + 151m,K − 151m},
B = {K + 35m,K − 35m,K + 47m,K − 47m, K + 94m, K − 94m,

K + 121m,K − 121m,K + 146m,K − 146m,K + 148m,K − 148m},
then

A
11= B.

¤

Remark: Note that while the K and m are irrelevant in (4.11) in so far
as finding integer solutions to the Prouhet-Tarry-Escott problem (since the
solution derived another solution by scaling by m and translating by K is
trivially equivalent to the original solution), solving B12 = 1 for K leaves m
as a non-trivial free parameter in (4.10).

5. Identities of the Rogers-Ramanujan-Slater Type

We next prove a number of identities of the Rogers-Ramanujan-Slater
type. We believe these to be new. We first prove two general transforma-
tions.
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Corollary 10. For q and x inside the unit disc, and integers a > 0 and b,

(5.1)
∞∑

n=0

(q
√

xyz,−q
√

xyz, y, z; q)nxnq(an2+bn)/2

(
√

xyz,−√xyz, qxy, qxz; q)n(−q(a+b)/2; qa)n

=
(1− xy) (1− xz)
(1− x) (1− xyz)

(
1− q(a−b)/2

∞∑

n=1

(y, z; q)nxnq(an2+(b−2a)n)/2

(xy, xz; q)n(−q(a+b)/2; qa)n

)
.

Proof. In Corollary 1 set α0 = 1 and, for n > 0,

αn =
q(an2+bn)/2

(−q(a+b)/2; qa)n
− q(a(n−1)2+b(n−1))/2

(−q(a+b)/2; qa)n−1
= −q(a−b)/2 q(an2+(b−2a)n)/2

(−q(a+b)/2; qa)n
.

¤

Corollary 11. For q and x inside the unit disc, and integers a > 0 and b,

(5.2)
∞∑

n=0

(q
√

xyz,−q
√

xyz, y, z; q)nxnqan2+bn

(
√

xyz,−√xyz, qxy, qxz; q)n
=

(1− xy) (1− xz)
(1− x) (1− xyz)

×
(

1− q(a−b)
∞∑

n=1

(y, z; q)nxnqan2+(b−2a)n(1− q2an+b−a)
(xy, xz; q)n

)
.

Proof. In Corollary 1 set α0 = 1 and, for n > 0,

αn = qan2+bn − qa(n−1)2+b(n−1) = −qan2+(b−2a)n+a−b(1− q2an+b−a).

¤

Corollary 12.

(5.3)
∞∑

n=0

(1 + q−2n+3)qn2+6n

(q4; q4)n
=

1
(q2, q3; q5)∞(−q2; q2)∞

.

(5.4)
∞∑

n=0

(1 + q−2n+1)qn2+4n

(q4; q4)n
=

1
(q, q4; q5)∞(−q2; q2)∞

.

Proof. In (5.2), set z = 0, replace x by x/y and let y →∞ to get

(5.5)
∞∑

n=0

(−x)nqan2+bn+n(n−1)/2

(xq; q)n
= (1− x)

×
(

1− q(a−b)
∞∑

n=1

(−x)nqan2+(b−2a)n+n(n−1)/2(1− q2an+b−a)
(x; q)n

)
.

Next, let a = −1/4, b = 1, replace q by q4 and let x → 1 to get
∞∑

n=0

(−1)nqn2+2n

(q4; q4)n
= −q−5

∞∑

n=1

(−1)nqn2+4n(1− q−2n+5)
(q4; q4)n−1

.
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Replace q by −q, re-index the right side by replacing n by n + 1 and (5.3)
follows from the following identity of Rogers ([17], page 331):

∞∑

n=0

qn2+2n

(q4; q4)n
=

1
(q2, q3; q5)∞(−q2; q2)∞

.

The identity at (5.4) follows similarly, using instead a = −1/4, b = 1/2 in
(5.5) and employing another identity of Rogers ([17], page 330):

∞∑

n=0

qn2

(q4; q4)n
=

1
(q, q4; q5)∞(−q2; q2)∞

.

¤
Corollary 13.

(5.6)
∞∑

n=0

(b, q3/b; q)nqn(n+1)/2

(q2; q2)n+1(q; q)n
=

(q4/b, bq; q2)∞
(q; q)∞

.

(5.7)
∞∑

n=0

(1− q2n+1)(−q3; q2)nqn2

(q2; q2)n
=

1
(q3, q4, q5; q8)∞

.

(5.8)
∞∑

n=0

(1− q2n−1)(−q3; q2)nqn2−2n

(q2; q2)n
=

1
(q, q4, q7; q8)∞

.

(5.9) 1 +
∞∑

n=1

(−q; q)nq(n2−n)/2

(q; q)n−1
=

(−1; q)∞(−q6,−q10, q16; q16)∞
(q4; q4)∞

.

(5.10) −1 +
∞∑

n=1

(−q; q)nq(n2−n)/2

(q; q)n−1
= q

(−1; q)∞(−q2,−q14, q16; q16)∞
(q4; q4)∞

.

Proof. In (4.1), let z = 0, replace x by x/y and let y →∞ to get
∞∑

n=0

(aq, bq; q)n(−x)nqn(n−1)/2

(qx, abq, q; q)n
= (1− x)

∞∑

n=0

(a, b; q)n(−xq)nqn(n−1)/2

(x, abq, q; q)n
.

Then set x = −q, a = b/q and then use Andrews’ q-Bailey identity,
∞∑

n=0

(b, q/b; q)ncnqn(n−1)/2

(c; q)n(q2; q2)n
=

(cq/b, bc; q2)∞
(c; q)∞

with c = q2, to sum the right side. Finally, replace b by b/q and (5.6) follows
after a slight manipulation.

For the remaining identities, in (4.1) replace x by x/y, let y → ∞ and
then set z = x and b = 0 to get

∞∑

n=0

(1 + xqn)(aq; q)n(−x)nqn(n−1)/2

(q; q)n
=

∞∑

n=0

(a; q)n(−x)nqn(n+1)/2

(q; q)n
.
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For (5.7) and (5.8), replace q by q2, set a = −q and, respectively, x = −q
and x = −1/q, and use the Göllnitz-Gordon-Slater identities ([12], [13], [22])

∞∑

n=0

qn2+2n(−q; q2)n

(q2; q2)n
=

1
(q3; q8)∞(q4; q8)∞(q5; q8)∞

,(5.11)

∞∑

n=0

qn2
(−q; q2)n

(q2; q2)n
=

1
(q; q8)∞(q4; q8)∞(q7; q8)∞

,

to sum the respective right sides.
For (5.9), set a = x = −1 and use the following identity of Gessel and

Stanton ([11], page 196)

1 +
∞∑

n=1

(−q; q)n−1q
(n2+n)/2

(q; q)n
=

(−q; q)∞(−q6,−q10, q16; q16)∞
(q4; q4)∞

.

to sum the resulting right side. The identity at (5.10) follows similarly, again
with a = x = −1, upon using another identity of Gessel and Stanton ([11],
page 196)

∞∑

n=0

(−q; q)nq(n2+3n)/2

(q; q)n+1
=

(−q; q)∞(−q2,−q14, q16; q16)∞
(q4; q4)∞

.

¤
Corollary 14.

(5.12)
∞∑

n=0

(−q2; q2)n+1q
n2+2n

(q; q)2n+3
= 2(−q2,−q14, q16; q16)∞

(−q; q2)∞
(q2; q2)∞

− 1
1− q

.

(5.13)
∞∑

n=0

(−q2; q2)nqn2

(q; q)2n+1
= 2

(q2, q14, q16; q16)∞(q12, q20; q32)∞
(q; q)∞

− 1.

Proof. We use (5.1) to prove these identities. First, let z → 0 and replace q
with q2 to get

(5.14)
∞∑

n=0

(y; q2)nxnqan2+bn

(q2xy; q2)n(−qa+b; q2a)n

=
(1− xy)
(1− x)

(
1− qa−b

∞∑

n=1

(y; q2)nxnqan2+(b−2a)n

(xy; q2)n(−qa+b; q2a)n

)
.

For (5.12), set a = 1, b = 2, y = −q2, and x = −1. Replace q with −q,
divide both sides by (1− q)(1− q2) and use Slater’s identity 69 to sum the
resulting left side:

∞∑

n=0

(−q2; q2)nqn2+2n

(q; q)2n+2
= (−q2,−q14, q16; q16)∞

(−q; q2)∞
(q2; q2)∞

.

The result follows after some slight manipulation.
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The proof of (5.13) is similar, except we set a = 1, b = 0, y = −1, and
x = −1, replace q with −q, and use Slater’s identity 121:

1 +
∞∑

n=1

(−q2; q2)n−1q
n2

(q; q)2n
=

(q2, q14, q16; q16)∞(q12, q20; q32)∞
(q; q)∞

.

¤

6. Representation of False Theta Series as basic
Hypergeometric Series

In this section we derive some new representations of the false theta series∑∞
n=0(−1)nqn(n+1)/2 and

∑∞
n=0 qn(3n+1)/2(1−q2n+1), as basic hypergeomet-

ric series.
On page 13 of the Lost Notebook [16] (see also [3, page 229]), Ramanujan

recorded the following identity (amongst others in a similar vein):

(6.1)
∞∑

n=0

(q; q2)n(−1)nqn2+n

(−q; q)2n+1
=

∞∑

n=0

(−1)nqn(n+1)/2.

On page 37 of the Lost Notebook, he recorded the identities
∞∑

n=0

qn(3n+1)/2(1− q2n+1) =
∞∑

n=0

q2n2+n

(−q; q)2n+1
(6.2)

=
∞∑

n=0

(−1)nqn(n+1)/2

(−q; q)n
.

The identity that follows from equating the left side to the second right
side above also follows as a special case of a more general identity first stated
by Rogers [18].

We use these identities in conjunction with (5.14) to prove the following.

Corollary 15.

(6.3) 1−
∞∑

n=0

(q; q2)n(−1)nqn2−n

(−1; q)2n+1
=

∞∑

n=0

(−1)nqn(n+1)/2.

(6.4)
2

1 + q
−

∞∑

n=0

q2n2+3n

(−q; q)2n+1(1 + q2n+3)
=

∞∑

n=0

qn(3n+1)/2(1− q2n+1).

(6.5)
1
2

+
∞∑

n=0

(−1)nqn(n+1)/2

(−1; q)n+2
=

∞∑

n=0

qn(3n+1)/2(1− q2n+1).

Proof. For (6.3), set a = b = 1, y = q and x = −1 in (5.14). Then divide
both sides of the resulting identity by 1 + q, so that the left side becomes
the left side of (6.1). The result follows after re-indexing the resulting sum
on the right side, together with a little manipulation.
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For (6.4), replace x with x/y in (5.14) and let y →∞ to get

(6.6)
∞∑

n=0

(−x)nq(a+1)n2+(b−1)n

(q2x; q2)n(−qa+b; q2a)n

= (1− x)

(
1− qa−b

∞∑

n=1

(−x)nq(a+1)n2+(b−2a−1)n

(x; q2)n(−qa+b; q2a)n

)
.

Then set a = 1, b = 2, x = −1, and divide both sides by 1 + q so that the
left side becomes the first right side of (6.2). The result again follows, upon
re-indexing the sum on the right side.

To get (6.3), set y = 0 in (5.14), then a = b = 1/2 and x = −1, so the
left side becomes the second right side in (6.2). The result likewise follows
after re-indexing the resulting sum on the right side. ¤
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[13] H. Göllnitz,Partitionen mit Differenzenbedingungen. J. reine angew. Math. 225 (1967)
154–190.

[14] Q. Liu; X. Ma On the Characteristic Equation of Well-Poised Baily Chains - To
appear.

[15] Carlos J. Moreno; Samuel S. Wagstaff, Jr. Sums of squares of integers. Discrete
Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton,
FL, 2006. xii+354 pp.



SOME APPLICATIONS OF A BAILEY-TYPE TRANSFORMATION 15

[16] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi,
1988.

[17] L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc.
London Math.Soc. 25 (1894),pp. 318-343.

[18] L. J. Rogers, On two theorems of combinatory analysis and some allied identities,
Proc. London Math. Soc. 16 (1917) 315–336.

[19] Chen Shuwen, The Prouhet-Tarry-Escott Problem.
http://euler.free.fr/eslp/TarryPrb.htm

[20] U. B. Singh, A note on a transformation of Bailey. Quart. J. Math. Oxford Ser. (2)
45 (1994), no. 177, 111–116.

[21] L. J. Slater, A new proof of Rogers’s transformations of infinite series. Proc. London
Math. Soc. (2) 53, (1951). 460–475.

[22] L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math.Soc.
54 (1952) 147–167.

[23] V. P. Spiridonov, An elliptic incarnation of the Bailey chain. Int. Math. Res. Not.
2002, no. 37, 1945–1977.

[24] M. V. Subbarao; A. Verma. Some summations of q-series by telescoping. Pacific J.
Math. 191 (1999), no. 1, 173–182.

[25] S. O. Warnaar, Extensions of the well-poised and elliptic well-poised Bailey lemma.
Indag. Math. (N.S.) 14 (2003), no. 3-4, 571–588.

Mathematics Department, Anderson Hall, West Chester University, West
Chester, PA 19383

E-mail address: jmclaughl@wcupa.edu

Mathematics Department, Anderson Hall, West Chester University, West
Chester, PA 19383

E-mail address: pzimmer@wcupa.edu


