SOME APPLICATIONS OF A BAILEY-TYPE TRANSFORMATION

JAMES MC LAUGHLIN AND PETER ZIMMER

Abstract. If k is set equal to $a q$ in the definition of a WP Bailey pair,

$$
\beta_{n}(a, k)=\sum_{j=0}^{n} \frac{(k / a)_{n-j}(k)_{n+j}}{(q)_{n-j}(a q)_{n+j}} \alpha_{j}(a, k),
$$

this equation reduces to $\beta_{n}=\sum_{j=0}^{n} \alpha_{j}$.
This seemingly trivial relation connecting the α_{n} 's with the β_{n} 's has some interesting consequences, including several basic hypergeometric summation formulae, a connection to the Prouhet-Tarry-Escott problem, some new identities of the Rogers-Ramanujan-Slater type, some new expressions for false theta series as basic hypergeometric series, and new transformation formulae for poly-basic hypergeometric series.

1. Introduction

We begin by recalling a construction of Andrews [1]. If a pair of sequences $\left(\alpha_{n}(a, k), \beta_{n}(a, k)\right)$ satisfy

$$
\begin{equation*}
\beta_{n}(a, k)=\sum_{j=0}^{n} \frac{(k / a)_{n-j}(k)_{n+j}}{(q)_{n-j}(a q)_{n+j}} \alpha_{j}(a, k) \tag{1.1}
\end{equation*}
$$

then so does the pair $\left(\alpha_{n}^{\prime}(a, k), \beta_{n}^{\prime}(a, k)\right)$, where

$$
\begin{align*}
\alpha_{n}^{\prime}(a, k)= & \frac{\left(\rho_{1}, \rho_{2}\right)_{n}}{\left(a q / \rho_{1}, a q / \rho_{2}\right)_{n}}\left(\frac{k}{c}\right)^{n} \alpha_{n}(a, c), \tag{1.2}\\
\beta_{n}^{\prime}(a, k)= & \frac{\left(k \rho_{1} / a, k \rho_{2} / a\right)_{n}}{\left(a q / \rho_{1}, a q / \rho_{2}\right)_{n}} \\
& \times \sum_{j=0}^{n} \frac{\left(1-c q^{2 j}\right)\left(\rho_{1}, \rho_{2}\right)_{j}(k / c)_{n-j}(k)_{n+j}}{(1-c)\left(k \rho_{1} / a, k \rho_{2} / a\right)_{n}(q)_{n-j}(q c)_{n+j}}\left(\frac{k}{c}\right)^{j} \beta_{j}(a, c),
\end{align*}
$$

with $c=k \rho_{1} \rho_{2} / a q$. A pair of sequences satisfying (1.1) is termed a $W P$ Bailey pair. If $k=0$, the pair of sequences become what is termed a Bailey pair relative to a.

[^0]Bailey [4, 5] used the q-Gauss sum,

$$
\begin{equation*}
{ }_{2} \phi_{1}(a, b ; c ; q, c / a b)=\frac{(c / a, c / b ; q)_{\infty}}{(c, c / a b ; q)_{\infty}} \tag{1.3}
\end{equation*}
$$

to get that, if $\left(\alpha_{n}, \beta_{n}\right)$ are a Bailey pair relative to a, then
$\sum_{n=0}^{\infty}(y, z ; q)_{n}\left(\frac{a q}{y z}\right)^{n} \beta_{n}=\frac{(a q / y, a q / z ; q)_{\infty}}{(a q, a q / y z ; q)_{\infty}} \sum_{n=0}^{\infty} \frac{(y, z ; q)_{n}}{(a q / y, a q / z ; q)_{n}}\left(\frac{x}{y z}\right)^{n} \alpha_{n}$.
Slater, in [21] and [22], subsequently used this transformation of Bailey to derive 130 identities of the Rogers-Ramanujan type.

The first major variations in Bailey's construct at (1.4) appear to be due to Bressoud [7]. Another variation was given by Singh in [20]. All of these variations were put in a more formal setting by Andrews in [1], where he introduced the generalization of the standard Bailey pair defined above.

In the same paper Andrews also described a second way to construct a new WP-Bailey pair from a given pair. These two constructions allowed a "tree" of WP-Bailey pairs to be generated from a single WP-Bailey pair. These two branches of the WP-Bailey tree were further investigated by Andrews and Berkovich in [2]. Spiridonov [23] derived an elliptic generalization of Andrews first WP-Bailey chain, and Warnaar [25] added four new branches to the WP-Bailey tree, two of which had generalizations to the elliptic level. More recently, and motivated in part by the papers above, Liu and Ma [14] introduced the idea of a general WP-Bailey chain (as a solution to a system of linear equations), and added one new branch to the WP-Bailey tree.

As we might expect, Andrews generalization of a Bailey pair leads to a generalization of (1.4). Indeed Andrews WP-Bailey chain at (1.2) can easily be shown to imply the following result (substitute the expression for $\alpha_{n}^{\prime}(a, k)$ in (1.1), set the two expressions for $\beta_{n}^{\prime}(a, k)$ equal, and let $\left.n \rightarrow \infty\right)$. Note that setting $k=0$ recovers Bailey's transformation at (1.4). (We initially derived (1.6) in a way similar to Bailey's derivation of (1.4), before realizing that it followed from Andrews' construction (1.2).)
Theorem 1. Under suitable convergence conditions, if $\left(\alpha_{n}(a, k), \beta_{n}(a, k)\right)$ satisfy

$$
\begin{equation*}
\beta_{n}(a, k)=\sum_{j=0}^{n} \frac{(k / a)_{n-j}(k)_{n+j}}{(q)_{n-j}(a q)_{n+j}} \alpha_{j}(a, k), \tag{1.5}
\end{equation*}
$$

then

$$
\begin{align*}
& \text { 1.6) } \quad \sum_{n=0}^{\infty} \frac{\left(1-k q^{2 n}\right)\left(\rho_{1}, \rho_{2} ; q\right)_{n}}{(1-k)\left(k q / \rho_{1}, k q / \rho_{2} ; q\right)_{n}}\left(\frac{a q}{\rho_{1} \rho_{2}}\right)^{n} \beta_{n}(a, k)= \tag{1.6}\\
& \frac{\left(k q, k q / \rho_{1} \rho_{2}, a q / \rho_{1}, a q / \rho_{2} ; q\right)_{\infty}}{\left(k q / \rho_{1}, k q / \rho_{2}, a q / \rho_{1} \rho_{2}, a q ; q\right)_{\infty}} \sum_{n=0}^{\infty} \frac{\left(\rho_{1}, \rho_{2} ; q\right)_{n}}{\left(a q / \rho_{1}, a q / \rho_{2} ; q\right)_{n}}\left(\frac{a q}{\rho_{1} \rho_{2}}\right)^{n} \alpha_{n}(a, k) .
\end{align*}
$$

In the present paper we investigate what at first glance may appear to be a trivial special case of Theorem 1.
Corollary 1. If $\beta_{n}=\sum_{r=0}^{n} \alpha_{r}$, then assuming both series converge,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(q \sqrt{x y z},-q \sqrt{x y z}, y, z ; q)_{n} x^{n} \beta_{n}}{(\sqrt{x y z},-\sqrt{x y z}, q x y, q x z ; q)_{n}}=\frac{(1-x y)(1-x z)}{(1-x)(1-x y z)} \sum_{n=0}^{\infty} \frac{(y, z ; q)_{n} x^{n} \alpha_{n}}{(x y, x z ; q)_{n}} \tag{1.7}
\end{equation*}
$$

Proof. Let $k=x y z, a=x y z / q, \rho_{1}=y$ and $\rho_{2}=z$ in Theorem 1.
This seemingly trivial relation connecting the α_{n} 's with the β_{n} 's has some interesting consequences, including several basic hypergeometric summation formulae, a connection to the Prouhet-Tarry-Escott problem, some new identities of the Rogers-Ramanujan-Slater type, some new expressions for false theta series as basic hypergeometric series, and new transformation formulae for poly-basic hypergeometric series.

We employ the usual notations. Let a and q be complex numbers, with $|q|<1$ unless otherwise stated. Then

$$
\begin{aligned}
& (a)_{0}=(a ; q)_{0}:=1, \quad(a)_{n}=(a ; q)_{n}:=\prod_{j=0}^{n-1}\left(1-a q^{j}\right), \text { for } n \in \mathbb{N} \\
& \left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \ldots\left(a_{k} ; q\right)_{n}=\left(a_{1}, a_{2}, \ldots, a_{k} ; q\right)_{n} \\
& (a ; q)_{\infty}:=\prod_{j=0}^{\infty}\left(1-a q^{j}\right) \\
& \left(a_{1} ; q\right)_{\infty}\left(a_{2} ; q\right)_{\infty} \ldots\left(a_{k} ; q\right)_{\infty}=\left(a_{1}, a_{2}, \ldots, a_{k} ; q\right)_{\infty}
\end{aligned}
$$

An $r_{r} \phi_{s}$ basic hypergeometric series is defined by

$$
\begin{aligned}
& { }_{r} \phi_{s}\left[\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q, x\right]= \\
& \qquad \sum_{n=0}^{\infty} \frac{\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \ldots\left(a_{r} ; q\right)_{n}}{(q ; q)_{n}\left(b_{1} ; q\right)_{n} \ldots\left(b_{s} ; q\right)_{n}}\left((-1)^{n} q^{n(n-1) / 2}\right)^{s+1-r} x^{n} .
\end{aligned}
$$

For future use we also recall the q-binomial theorem,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q ; q)_{n}} z^{n}=\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}} \tag{1.8}
\end{equation*}
$$

2. Various Summation Formulae for Basic Hypergeometric SERIES

We next derive a number of transformation formulae for basic hypergeometric series, transformations that give rise to summation formulae for particular choices of the parameters.

Corollary 2. For q and x inside the unit disc,

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(q \sqrt{x y z},-q \sqrt{x y z}, y, z ; q)_{2 n} x^{2 n}}{(\sqrt{x y z},-\sqrt{x y z}, q x y, q x z ; q)_{2 n}} \tag{2.1}\\
&=\frac{(1-x y)(1-x z)}{(1-x)(1-x y z)} \sum_{n=0}^{\infty} \frac{(y, z ; q)_{n}(-x)^{n}}{(x y, x z ; q)_{n}}
\end{align*}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(1-q^{2 n+1} / x\right)\left(q / x^{2} ; q\right)_{2 n} x^{2 n}}{(q ; q)_{2 n+1}}=\frac{1}{1+x} \frac{(q / x ; q)_{\infty}}{(x ; q)_{\infty}}, x \neq 0 \tag{2.2}
\end{equation*}
$$

Proof. In Corollary 1 let $\alpha_{r}=(-1)^{r}$ to get (2.1). Then set $y=q / x$, $z=q / x^{2}$, apply (1.8) to the right side, replace x by $-x$ and (2.2) follows.

Corollary 3. For q and x inside the unit disc,

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(q \sqrt{x y z},-q \sqrt{x y z}, y, z ; q)_{n} x^{n}(n+1)}{(\sqrt{x y z},-\sqrt{x y z}, q x y, q x z ; q)_{n}} \tag{2.3}\\
&=\frac{(1-x y)(1-x z)}{(1-x)(1-x y z)} \sum_{n=0}^{\infty} \frac{(y, z ; q)_{n} x^{n}}{(x y, x z ; q)_{n}}
\end{align*}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(1+q^{n+1} / x\right)\left(q / x^{2} ; q\right)_{n} x^{n}(n+1)}{(q ; q)_{n+1}}=\frac{1}{1-x} \frac{(q / x ; q)_{\infty}}{(x ; q)_{\infty}} \tag{2.4}
\end{equation*}
$$

Proof. Set $\alpha_{n}=1$ in Corollary 1 to get (2.3). The identity at (2.4) follows from (2.3) upon setting $y=q / x^{2}, z=q / x$, using (1.8) to sum the right side and then simplifying.

Corollary 4. For q, x and u all inside the unit disc,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(1+q^{n+1} / x\right)\left(q / x^{2} ; q\right)_{n} x^{n}\left(1-u^{n+1}\right)}{(q ; q)_{n+1}}=\frac{1-u}{1-x} \frac{(q u / x ; q)_{\infty}}{(x u ; q)_{\infty}} \tag{2.5}
\end{equation*}
$$

Proof. Set $\alpha_{n}=u^{n}, y=q / x$ and $z=q / x^{2}$. Now apply the q-binomial theorem (1.8) to the right side.

Corollary 5.

(2.6)

$$
{ }_{5} \phi_{4}\left[\begin{array}{l}
q \sqrt{x y z},-q \sqrt{x y z}, y, z, c q \\
\sqrt{x y z},-\sqrt{x y z}, q x y, q x z
\end{array} ; q, x\right]=\frac{(1-x y)(1-x z)}{(1-x)(1-x y z)} 3 \phi_{2}\left[\begin{array}{l}
y, z, c \\
x y, x z
\end{array} ; q, x q\right] .
$$

$$
{ }_{3} \phi_{2}\left[\begin{array}{l}
-q x y, y, x \tag{2.7}\\
-x y, q x^{2} y
\end{array} ; q, x\right]=\frac{1}{1+x y} \frac{\left(x^{2}, q x y ; q\right)_{\infty}}{\left(q x^{2} y, x ; q\right)_{\infty}} .
$$

Proof. We define $\alpha_{0}=1$, and for $n>0$,

$$
\alpha_{n}=\frac{(c q ; q)_{n}}{(q ; q)_{n}}-\frac{(c q ; q)_{n-1}}{(q ; q)_{n-1}}=\frac{(c ; q)_{n}}{(q ; q)_{n}} q^{n}
$$

Substitution into (1.7) immediately gives (2.6). Equation (2.7) follows upon letting $c=x / q, z=x y$ and using (1.3) to sum the resulting right side and simplifying.

3. Transformation Formulae for Basic- and polybasic Hypergeometric Series

In contrast to the situation with basic hypergeometric series, most (possibly all) summation formulae for poly-basic hypergeometric series arise because the series involved telescope. This means that the terms in such an identity may be inserted in (1.7) to produce a transformation formula for polybasic hypergeometric series containing an additional base. Setting all the bases equal to q^{m}, for some integer m, then gives a transformation formula for basic hypergeometric series. We give one example in the next corollary, which contains a transformation formula connecting polybasic hypergeometric series with five independent bases.

Corollary 6. Let P, p, Q, q, R and x all lie inside the unit disc, and let a, b, c, y and z be complex numbers such that the denominators below are bounded away from zero. Then

$$
\begin{gather*}
\sum_{n=0}^{\infty} \frac{(q \sqrt{x y z},-q \sqrt{x y z}, y, z ; q)_{n}}{(\sqrt{x y z},-\sqrt{x y z}, q x y, q x z ; q)_{n}} \frac{\left(a p^{2} ; p^{2}\right)_{n}\left(b P^{2} ; P^{2}\right)_{n}}{\left(\frac{P Q R}{p} ; \frac{P Q R}{p}\right)_{n}\left(\frac{a p P Q}{c R} ; \frac{p P Q}{R}\right)_{n}} \tag{3.1}\\
\times \frac{\left(c R^{2} ; R^{2}\right)_{n}\left(\frac{a Q^{2}}{b c} ; Q^{2}\right)_{n}}{\left(\frac{a p Q R}{b P} ; \frac{p Q R}{P}\right)_{n}\left(\frac{b c p P R}{Q} ; \frac{p P R}{Q}\right)_{n}} x^{n} \\
=\frac{(1-x y)(1-x z)}{(1-x)(1-x y z)} \times
\end{gather*}
$$

$$
\sum_{n=0}^{\infty} \frac{(y, z ; q)_{n}}{(x y, x z ; q)_{n}} \frac{\left(1-a p^{n} P^{n} Q^{n} R^{n}\right)\left(1-b \frac{p^{n} P^{n}}{Q^{n} R^{n}}\right)\left(1-\frac{P^{n} Q^{n}}{c p^{n} R^{n}}\right)\left(1-\frac{a p^{n} Q^{n}}{b c P^{n} R^{n}}\right)}{(1-a)(1-b)\left(1-\frac{1}{c}\right)\left(1-\frac{a}{b c}\right)}
$$

$$
\times \frac{\left(a ; p^{2}\right)_{n}\left(b ; P^{2}\right)_{n}}{\left(\frac{P Q R}{p} ; \frac{P Q R}{p}\right)_{n}\left(\frac{a p P Q}{c R} ; \frac{p P Q}{R}\right)_{n}} \frac{\left(c ; R^{2}\right)_{n}\left(\frac{a}{b c} ; Q^{2}\right)_{n}}{\left(\frac{a p Q R}{b P} ; \frac{p Q R}{P}\right)_{n}\left(\frac{b c p P R}{Q} ; \frac{p P R}{Q}\right)_{n}}\left(x R^{2}\right)^{n} ;
$$

$$
\begin{gather*}
\sum_{n=0}^{\infty} \frac{(q \sqrt{x y z},-q \sqrt{x y z}, y, z ; q)_{n}}{(\sqrt{x y z},-\sqrt{x y z}, q x y, q x z ; q)_{n}} \frac{\left(a q^{m}, b q^{m}, c q^{m}, \frac{a q^{m}}{b c} ; q^{m}\right)_{n}}{\left(\frac{a}{c} q^{m}, \frac{a}{b} q^{m}, b c q^{m}, q^{m} ; q^{m}\right)_{n}} x^{n} \tag{3.2}\\
=\frac{(1-x y)(1-x z)}{(1-x)(1-x y z)} \times
\end{gather*}
$$

$$
\sum_{n=0}^{\infty} \frac{(y, z ; q)_{n}}{(x y, x z ; q)_{n}} \frac{\left(q^{m} \sqrt{a},-q^{m} \sqrt{a}, a, b, c, \frac{a}{b c} ; q^{m}\right)_{n}}{\left(\sqrt{a},-\sqrt{a}, \frac{a}{c} q^{m}, \frac{a}{b} q^{m}, b c q^{m}, q^{m} ; q^{m}\right)_{n}}\left(x q^{m}\right)^{n}
$$

Proof. We use the special case $m=0, d=1$ of the identity of Subbarao and Verma labeled (2.2) in [24], namely,

$$
\begin{gather*}
\sum_{k=0}^{n} \frac{\left(1-a p^{k} P^{k} Q^{k} R^{k}\right)\left(1-b \frac{p^{k} P^{k}}{Q^{k} R^{k}}\right)\left(1-\frac{P^{k} Q^{k}}{c p^{k} R^{k}}\right)\left(1-\frac{a p^{k} Q^{k}}{b c P^{k} R^{k}}\right)}{(1-a)(1-b)\left(1-\frac{1}{c}\right)\left(1-\frac{a}{b c}\right)} \tag{3.3}\\
\left.\times \frac{\left(a ; p^{2}\right)_{k}\left(b ; P^{2}\right)_{k}}{\left(\frac{P Q R}{p} ; \frac{P Q R}{p}\right)_{k}\left(\frac{a p P Q}{c R} ; \frac{p P Q}{R}\right)_{k}} \frac{\left(c ; R^{2}\right)_{k}\left(\frac{a}{b c} ; Q^{2}\right)_{k}}{b P} ; \frac{p Q R}{P}\right)_{k}\left(\frac{b c p P R}{Q} ; \frac{p P R}{Q}\right)_{k} \\
R^{2 k} \\
\quad=\frac{\left(a p^{2} ; p^{2}\right)_{n}\left(b P^{2} ; P^{2}\right)_{n}\left(c R^{2} ; R^{2}\right)_{n}\left(\frac{a Q^{2}}{b c} ; Q^{2}\right)_{n}}{\left(\frac{P Q R}{p} ; \frac{P Q R}{p}\right)_{n}\left(\frac{a p P Q}{c R} ; \frac{p P Q}{R}\right)_{n}\left(\frac{a p Q R}{b P} ; \frac{p Q R}{P}\right)_{n}\left(\frac{b c p P R}{Q} ; \frac{p P R}{Q}\right)_{n}}
\end{gather*}
$$

and then in (1.7) let α_{i} be the i-th term in the sum above, and let β_{n} be the quantity on the right side above.

The identity at (3.2) follows upon setting $P=Q=p=R=q^{m / 2}$ and simplifying.

4. A Connection with the Prouhet-Tarry-Escott Problem

We begin with a simple example.

Corollary 7.

$$
\left.\begin{array}{rl}
{ }_{6} \phi_{5}\left[\begin{array}{l}
q \sqrt{x y z},-q \sqrt{x y z}, y, z, a q, b q \\
\sqrt{x y z},-\sqrt{x y z}, q x y, q x z, a b q
\end{array} q, x\right. \tag{4.1}
\end{array}\right] .
$$

Proof. This time, in Corollary 1, define $\alpha_{0}=1$, and for $n>0$,

$$
\alpha_{n}=\frac{(a q, b q ; q)_{n}}{(a b q, q ; q)_{n}}-\frac{(a q, b q ; q)_{n-1}}{(a b q, q ; q)_{n-1}}=\frac{(a, b ; q)_{n} q^{n}}{(a b q, q ; q)_{n}}
$$

The result follows as above.
The telescoping approach used in Corollary 7 can be generalized in one direction. We have the following result.

Proposition 1. Let x, y and q be complex numbers with $|x|,|q|<1$. Suppose $a_{1}, a_{2}, \ldots, a_{m}$ are non-zero complex numbers and let $b_{1}, b_{2}, \ldots, b_{m-1}$ satisfy

$$
\begin{equation*}
(z-1) \prod_{i=1}^{m-1}\left(z-b_{i}\right)=\prod_{i=1}^{m}\left(z-a_{i}\right)-\prod_{i=1}^{m}\left(1-a_{i}\right) \tag{4.2}
\end{equation*}
$$

Suppose further that $b_{i} \neq 0$, for $1 \leq i \leq m-1$. Then

$$
\begin{align*}
& { }_{m+4} \phi_{m+3}\left[\begin{array}{c}
q \sqrt{x y z},-q \sqrt{x y z}, y, z, a_{1} q, \ldots, a_{m-1} q, a_{m} q \\
\sqrt{x y z},-\sqrt{x y z}, q x y, q x z, b_{1} q, \ldots, b_{m-1} q
\end{array} ; q\right] \tag{4.3}\\
& \quad=\frac{(1-x y)(1-x z)}{(1-x)(1-x y z)} m+2 \phi_{m+1}\left[\begin{array}{l}
y, z, a_{1}, \ldots, a_{m-1}, a_{m} ; q, x q^{m} \\
x y, x z, b_{1} q, \ldots, b_{m-1} q
\end{array}\right] .
\end{align*}
$$

Proof. Define $\alpha_{0}=1$, and for $n \geq 1$, set

$$
\alpha_{n}=\frac{\left(a_{1} q, a_{2} q, \ldots, a_{m-1} q, a_{m} q ; q\right)_{n}}{\left(b_{1} q, b_{2} q, \ldots, b_{m-1} q, q ; q\right)_{n}}-\frac{\left(a_{1} q, a_{2} q, \ldots, a_{m-1} q, a_{m} q ; q\right)_{n-1}}{\left(b_{1} q, b_{2} q, \ldots, b_{m-1} q, q ; q\right)_{n-1}} .
$$

By (4.2),

$$
\alpha_{n}=\frac{\left(a_{1}, a_{2}, \ldots, a_{m-1}, a_{m} ; q\right)_{n}}{\left(b_{1} q, b_{2} q, \ldots, b_{m-1} q, q ; q\right)_{n}} q^{m n}
$$

and clearly

$$
\begin{equation*}
\beta_{n}=\sum_{r=0}^{n} \alpha_{r}=\frac{\left(a_{1} q, a_{2} q, \ldots, a_{m-1} q, a_{m} q ; q\right)_{n}}{\left(b_{1} q, b_{2} q, \ldots, b_{m-1} q, q ; q\right)_{n}} \tag{4.4}
\end{equation*}
$$

The result follows from Corollary 1.
The fundamental theorem of algebra guarantees that there is no shortage of sets of complex numbers $a_{1}, a_{2}, \ldots, a_{m}, b_{1}, b_{2}, \ldots, b_{m-1}$ satisfying (4.2), but for $m>4$ it is still a problem to find explicit examples. However, a related problem in number theory provides solutions for $m \leq 10$ and $m=12$.

The Prouhet-Tarry-Escott problem asks for two distinct multisets of integers $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{m}\right\}$ such that

$$
\begin{equation*}
\sum_{i=1}^{m} a_{i}^{e}=\sum_{i=1}^{m} b_{i}^{e}, \text { for } e=1,2, \ldots, k \tag{4.5}
\end{equation*}
$$

for some integer $k<m$. If $k=m-1$, such a solution is called ideal. We write

$$
\begin{equation*}
\left\{a_{1}, \ldots, a_{m}\right\} \stackrel{k}{=}\left\{b_{1}, \ldots, b_{m}\right\} \tag{4.6}
\end{equation*}
$$

to denote a solution to the Prouhet-Tarry-Escott problem.
The connection between the Prouhet-Tarry-Escott problem and the problem mentioned above is contained in the following proposition (see [6], page 2065).

Proposition 2. The multisets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{m}\right\}$ form an ideal solution to the Prouhet-Tarry-Escott problem if and only if

$$
\prod_{i=1}^{m}\left(z-a_{i}\right)-\prod_{i=1}^{m}\left(z-b_{i}\right)=C
$$

for some constant C.

Note that the fact that $b_{m}=1$ is not a problem, since if

$$
\left\{a_{1}, \ldots, a_{m}\right\} \stackrel{m-1}{=}\left\{b_{1}, \ldots, b_{m}\right\}
$$

then

$$
\left\{M a_{1}+K, \ldots, M a_{m}+K\right\} \stackrel{m-1}{=}\left\{M b_{1}+K, \ldots, M b_{m}+K\right\}
$$

for constants M and K (see Lemma 1 in [8], for example).
Parametric ideal solutions are known for $m=1, \ldots, 8$ and particular numerical solutions are known for $m=9,10$ and 12. Although every ideal solution to the Prouhet-Tarry-Escott problem gives rise to a transformation between basic hypergeometric series, we will consider just one example. Note also that it is not necessary, for our purposes, that the a_{i} 's and b_{i} 's be integers. As above, we assume x, y and q are complex numbers, with $|x|,|q|<1$.

Corollary 8. Let m and n be non-zero complex numbers. Set

$$
\begin{array}{ll}
a_{1}=-3 m^{2}+7 n m-2 n^{2}+1, & b_{1}=-3 m^{2}+8 n m+n^{2}+1 \tag{4.7}\\
a_{2}=-2 m^{2}+8 n m+2 n^{2}+1, & b_{2}=-2 m^{2}+3 n m-3 n^{2}+1 \\
a_{3}=-m^{2}-n^{2}+1, & b_{3}=-m^{2}+10 n m-n^{2}+1 \\
a_{4}=2 m^{2}+3 n m+n^{2}+1, & b_{4}=2 m^{2}+2 n m-2 n^{2}+1 \\
a_{5}=m^{2}+2 n m-3 n^{2}+1, & b_{5}=m^{2}+7 n m+2 n^{2}+1, \\
a_{6}=10 m n+1 . &
\end{array}
$$

Then

$$
\left.\begin{array}{rl}
{ }_{10} \phi_{9}
\end{array} \begin{array}{c}
q \sqrt{x y z},-q \sqrt{x y z}, y, z, a_{1} q, a_{2} q, a_{3} q, a_{4} q, a_{5} q, a_{6} q \tag{4.8}\\
\sqrt{x y z},-\sqrt{x y z}, q x y, q x z, b_{1} q, b_{2} q, b_{3} q, b_{4} q, b_{5} q
\end{array} ; q, x\right] \text {. } 1
$$

Proof. We have from page 629-30 and Lemma 1 in [8], that if

$$
\begin{array}{ll}
a_{1}=-5 m^{2}+4 n m-3 n^{2}+K, & b_{1}=-5 m^{2}+6 n m+3 n^{2}+K, \tag{4.9}\\
a_{2}=-3 m^{2}+6 n m+5 n^{2}+K, & b_{2}=-3 m^{2}-4 n m-5 n^{2}+K, \\
a_{3}=-m^{2}-10 n m-n^{2}+K, & b_{3}=-m^{2}+10 n m-n^{2}+K, \\
a_{4}=5 m^{2}-4 n m+3 n^{2}+K, & b_{4}=5 m^{2}-6 n m-3 n^{2}+K, \\
a_{5}=3 m^{2}-6 n m-5 n^{2}+K, & b_{5}=3 m^{2}+4 n m+5 n^{2}+K, \\
a_{6}=m^{2}+10 n m+n^{2}+K, & b_{6}=m^{2}-10 n m+n^{2}+K,
\end{array}
$$

then

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\} \stackrel{5}{=}\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}
$$

We set $b_{6}=1$, solve for K and back-substitute in (4.9). We then replace m by $m / \sqrt{2}$ and n by $n / \sqrt{2}$. This leads to the values for the a_{i} 's and b_{i} 's given at (4.7) and the result follows, as before, from Proposition 1.

We also note each ideal solution to the Prouhet-Tarry-Escott problem leads to an infinite summation formula, upon letting $n \rightarrow \infty$ in (4.4). We give one example.

Corollary 9. Let m be a non-zero complex number. Set

$$
\begin{array}{r}
\left\{a_{i}\right\}_{i=1}^{12}=\{1+170 m, 1+126 m, 1+209 m, 1+87 m, 1+234 m, 1+62 m \\
1+275 m, 1+21 m, 1+288 m, 1+8 m, 1+299 m, 1-3 m\} \\
\left\{b_{i}\right\}_{i=1}^{11}=\{1+183 m, 1+113 m, 1+195 m, 1+101 m, 1+242 m, 1+54 m \\
1+269 m, 1+27 m, 1+294 m, 1+2 m, 1+296 m\}
\end{array}
$$

Then

$$
\begin{align*}
& { }_{12} \phi_{11}\left[\begin{array}{l}
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12} \\
b_{1} q, b_{2} q, b_{3} q, b_{4} q, b_{5} q, b_{6} q, b_{7} q, b_{9} q, b_{10} q, b_{11} q
\end{array}\right] . \tag{4.10}\\
& =\frac{\left(a_{1} q, a_{2} q, a_{3} q, a_{4} q, a_{5} q, a_{6} q, a_{7} q, a_{8} q, a_{9} q, a_{10} q, a_{11} q, a_{12} q ; q\right)_{\infty}}{\left(b_{1} q, b_{2} q, b_{3} q, b_{4} q, b_{5} q, b_{6} q, b_{7} q, b_{9} q, b_{10} q, b_{11} q, q ; q\right)_{\infty}}
\end{align*}
$$

Proof. We use a result of Nuutti Kuosa, Jean-Charles Meyrignac and Chen Shuwen (see [19]), namely, that if

$$
\begin{align*}
A= & \{K+22 m, K-22 m, K+61 m, K-61 m, K+86 m, K-86 m \tag{4.11}\\
& K+127 m, K-127 m, K+140 m, K-140 m, K+151 m, K-151 m\} \\
B= & \{K+35 m, K-35 m, K+47 m, K-47 m, K+94 m, K-94 m \\
& K+121 m, K-121 m, K+146 m, K-146 m, K+148 m, K-148 m\}
\end{align*}
$$

then

$$
A \stackrel{11}{=} B
$$

Remark: Note that while the K and m are irrelevant in (4.11) in so far as finding integer solutions to the Prouhet-Tarry-Escott problem (since the solution derived another solution by scaling by m and translating by K is trivially equivalent to the original solution), solving $B_{12}=1$ for K leaves m as a non-trivial free parameter in (4.10).

5. Identities of the Rogers-Ramanujan-Slater Type

We next prove a number of identities of the Rogers-Ramanujan-Slater type. We believe these to be new. We first prove two general transformations.

Corollary 10. For q and x inside the unit disc, and integers $a>0$ and b,

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(q \sqrt{x y z},-q \sqrt{x y z}, y, z ; q)_{n} x^{n} q^{\left(a n^{2}+b n\right) / 2}}{(\sqrt{x y z},-\sqrt{x y z}, q x y, q x z ; q)_{n}\left(-q^{(a+b) / 2} ; q^{a}\right)_{n}} \tag{5.1}\\
= & \frac{(1-x y)(1-x z)}{(1-x)(1-x y z)}\left(1-q^{(a-b) / 2} \sum_{n=1}^{\infty} \frac{(y, z ; q)_{n} x^{n} q^{\left(a n^{2}+(b-2 a) n\right) / 2}}{(x y, x z ; q)_{n}\left(-q^{(a+b) / 2} ; q^{a}\right)_{n}}\right)
\end{align*}
$$

Proof. In Corollary 1 set $\alpha_{0}=1$ and, for $n>0$,

$$
\alpha_{n}=\frac{q^{\left(a n^{2}+b n\right) / 2}}{\left(-q^{(a+b) / 2} ; q^{a}\right)_{n}}-\frac{q^{\left(a(n-1)^{2}+b(n-1)\right) / 2}}{\left(-q^{(a+b) / 2} ; q^{a}\right)_{n-1}}=-q^{(a-b) / 2} \frac{q^{\left(a n^{2}+(b-2 a) n\right) / 2}}{\left(-q^{(a+b) / 2} ; q^{a}\right)_{n}}
$$

Corollary 11. For q and x inside the unit disc, and integers $a>0$ and b,

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(q \sqrt{x y z},-q \sqrt{x y z}, y, z ; q)_{n} x^{n} q^{a n^{2}+b n}}{(\sqrt{x y z},-\sqrt{x y z}, q x y, q x z ; q)_{n}}=\frac{(1-x y)(1-x z)}{(1-x)(1-x y z)} \tag{5.2}\\
& \quad \times\left(1-q^{(a-b)} \sum_{n=1}^{\infty} \frac{(y, z ; q)_{n} x^{n} q^{a n^{2}+(b-2 a) n}\left(1-q^{2 a n+b-a}\right)}{(x y, x z ; q)_{n}}\right)
\end{align*}
$$

Proof. In Corollary 1 set $\alpha_{0}=1$ and, for $n>0$,

$$
\alpha_{n}=q^{a n^{2}+b n}-q^{a(n-1)^{2}+b(n-1)}=-q^{a n^{2}+(b-2 a) n+a-b}\left(1-q^{2 a n+b-a}\right)
$$

Corollary 12.

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{\left(1+q^{-2 n+3}\right) q^{n^{2}+6 n}}{\left(q^{4} ; q^{4}\right)_{n}}=\frac{1}{\left(q^{2}, q^{3} ; q^{5}\right)_{\infty}\left(-q^{2} ; q^{2}\right)_{\infty}} . \tag{5.3}\\
& \sum_{n=0}^{\infty} \frac{\left(1+q^{-2 n+1}\right) q^{n^{2}+4 n}}{\left(q^{4} ; q^{4}\right)_{n}}=\frac{1}{\left(q, q^{4} ; q^{5}\right)_{\infty}\left(-q^{2} ; q^{2}\right)_{\infty}} . \tag{5.4}
\end{align*}
$$

Proof. In (5.2), set $z=0$, replace x by x / y and let $y \rightarrow \infty$ to get

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(-x)^{n} q^{a n^{2}+b n+n(n-1) / 2}}{(x q ; q)_{n}}=(1-x) \tag{5.5}\\
& \quad \times\left(1-q^{(a-b)} \sum_{n=1}^{\infty} \frac{(-x)^{n} q^{a n^{2}+(b-2 a) n+n(n-1) / 2}\left(1-q^{2 a n+b-a}\right)}{(x ; q)_{n}}\right) .
\end{align*}
$$

Next, let $a=-1 / 4, b=1$, replace q by q^{4} and let $x \rightarrow 1$ to get

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n^{2}+2 n}}{\left(q^{4} ; q^{4}\right)_{n}}=-q^{-5} \sum_{n=1}^{\infty} \frac{(-1)^{n} q^{n^{2}+4 n}\left(1-q^{-2 n+5}\right)}{\left(q^{4} ; q^{4}\right)_{n-1}}
$$

Replace q by $-q$, re-index the right side by replacing n by $n+1$ and (5.3) follows from the following identity of Rogers ([17], page 331):

$$
\sum_{n=0}^{\infty} \frac{q^{n^{2}+2 n}}{\left(q^{4} ; q^{4}\right)_{n}}=\frac{1}{\left(q^{2}, q^{3} ; q^{5}\right)_{\infty}\left(-q^{2} ; q^{2}\right)_{\infty}}
$$

The identity at (5.4) follows similarly, using instead $a=-1 / 4, b=1 / 2$ in (5.5) and employing another identity of Rogers ([17], page 330):

$$
\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{\left(q^{4} ; q^{4}\right)_{n}}=\frac{1}{\left(q, q^{4} ; q^{5}\right)_{\infty}\left(-q^{2} ; q^{2}\right)_{\infty}}
$$

Corollary 13.

$$
\begin{gather*}
\sum_{n=0}^{\infty} \frac{\left(b, q^{3} / b ; q\right)_{n} q^{n(n+1) / 2}}{\left(q^{2} ; q^{2}\right)_{n+1}(q ; q)_{n}}=\frac{\left(q^{4} / b, b q ; q^{2}\right)_{\infty}}{(q ; q)_{\infty}} \tag{5.6}\\
\sum_{n=0}^{\infty} \frac{\left(1-q^{2 n+1}\right)\left(-q^{3} ; q^{2}\right)_{n} q^{n^{2}}}{\left(q^{2} ; q^{2}\right)_{n}}=\frac{1}{\left(q^{3}, q^{4}, q^{5} ; q^{8}\right)_{\infty}} \tag{5.7}\\
\sum_{n=0}^{\infty} \frac{\left(1-q^{2 n-1}\right)\left(-q^{3} ; q^{2}\right)_{n} q^{n^{2}-2 n}}{\left(q^{2} ; q^{2}\right)_{n}}=\frac{1}{\left(q, q^{4}, q^{7} ; q^{8}\right)_{\infty}} \tag{5.8}\\
1+\sum_{n=1}^{\infty} \frac{(-q ; q)_{n} q^{\left(n^{2}-n\right) / 2}}{(q ; q)_{n-1}}=\frac{(-1 ; q)_{\infty}\left(-q^{6},-q^{10}, q^{16} ; q^{16}\right)_{\infty}}{\left(q^{4} ; q^{4}\right)_{\infty}} \tag{5.9}\\
-1+\sum_{n=1}^{\infty} \frac{(-q ; q)_{n} q^{\left(n^{2}-n\right) / 2}}{(q ; q)_{n-1}}=q \frac{(-1 ; q)_{\infty}\left(-q^{2},-q^{14}, q^{16} ; q^{16}\right)_{\infty}}{\left(q^{4} ; q^{4}\right)_{\infty}} \tag{5.10}
\end{gather*}
$$

Proof. In (4.1), let $z=0$, replace x by x / y and let $y \rightarrow \infty$ to get

$$
\sum_{n=0}^{\infty} \frac{(a q, b q ; q)_{n}(-x)^{n} q^{n(n-1) / 2}}{(q x, a b q, q ; q)_{n}}=(1-x) \sum_{n=0}^{\infty} \frac{(a, b ; q)_{n}(-x q)^{n} q^{n(n-1) / 2}}{(x, a b q, q ; q)_{n}}
$$

Then set $x=-q, a=b / q$ and then use Andrews' q-Bailey identity,

$$
\sum_{n=0}^{\infty} \frac{(b, q / b ; q)_{n} c^{n} q^{n(n-1) / 2}}{(c ; q)_{n}\left(q^{2} ; q^{2}\right)_{n}}=\frac{\left(c q / b, b c ; q^{2}\right)_{\infty}}{(c ; q)_{\infty}}
$$

with $c=q^{2}$, to sum the right side. Finally, replace b by b / q and (5.6) follows after a slight manipulation.

For the remaining identities, in (4.1) replace x by x / y, let $y \rightarrow \infty$ and then set $z=x$ and $b=0$ to get

$$
\sum_{n=0}^{\infty} \frac{\left(1+x q^{n}\right)(a q ; q)_{n}(-x)^{n} q^{n(n-1) / 2}}{(q ; q)_{n}}=\sum_{n=0}^{\infty} \frac{(a ; q)_{n}(-x)^{n} q^{n(n+1) / 2}}{(q ; q)_{n}}
$$

For (5.7) and (5.8), replace q by q^{2}, set $a=-q$ and, respectively, $x=-q$ and $x=-1 / q$, and use the Göllnitz-Gordon-Slater identities ([12], [13], [22])

$$
\begin{align*}
\sum_{n=0}^{\infty} \frac{q^{n^{2}+2 n}\left(-q ; q^{2}\right)_{n}}{\left(q^{2} ; q^{2}\right)_{n}} & =\frac{1}{\left(q^{3} ; q^{8}\right)_{\infty}\left(q^{4} ; q^{8}\right)_{\infty}\left(q^{5} ; q^{8}\right)_{\infty}} \tag{5.11}\\
\sum_{n=0}^{\infty} \frac{q^{n^{2}}\left(-q ; q^{2}\right)_{n}}{\left(q^{2} ; q^{2}\right)_{n}} & =\frac{1}{\left(q ; q^{8}\right)_{\infty}\left(q^{4} ; q^{8}\right)_{\infty}\left(q^{7} ; q^{8}\right)_{\infty}}
\end{align*}
$$

to sum the respective right sides.
For (5.9), set $a=x=-1$ and use the following identity of Gessel and Stanton ([11], page 196)

$$
1+\sum_{n=1}^{\infty} \frac{(-q ; q)_{n-1} q^{\left(n^{2}+n\right) / 2}}{(q ; q)_{n}}=\frac{(-q ; q)_{\infty}\left(-q^{6},-q^{10}, q^{16} ; q^{16}\right)_{\infty}}{\left(q^{4} ; q^{4}\right)_{\infty}}
$$

to sum the resulting right side. The identity at (5.10) follows similarly, again with $a=x=-1$, upon using another identity of Gessel and Stanton ([11], page 196)

$$
\sum_{n=0}^{\infty} \frac{(-q ; q)_{n} q^{\left(n^{2}+3 n\right) / 2}}{(q ; q)_{n+1}}=\frac{(-q ; q)_{\infty}\left(-q^{2},-q^{14}, q^{16} ; q^{16}\right)_{\infty}}{\left(q^{4} ; q^{4}\right)_{\infty}}
$$

Corollary 14.

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(-q^{2} ; q^{2}\right)_{n+1} q^{n^{2}+2 n}}{(q ; q)_{2 n+3}}=2\left(-q^{2},-q^{14}, q^{16} ; q^{16}\right)_{\infty} \frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}}-\frac{1}{1-q} \tag{5.12}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(-q^{2} ; q^{2}\right)_{n} q^{n^{2}}}{(q ; q)_{2 n+1}}=2 \frac{\left(q^{2}, q^{14}, q^{16} ; q^{16}\right)_{\infty}\left(q^{12}, q^{20} ; q^{32}\right)_{\infty}}{(q ; q)_{\infty}}-1 \tag{5.13}
\end{equation*}
$$

Proof. We use (5.1) to prove these identities. First, let $z \rightarrow 0$ and replace q with q^{2} to get

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{\left(y ; q^{2}\right)_{n} x^{n} q^{a n^{2}+b n}}{\left(q^{2} x y ; q^{2}\right)_{n}\left(-q^{a+b} ; q^{2 a}\right)_{n}} \tag{5.14}\\
& \quad=\frac{(1-x y)}{(1-x)}\left(1-q^{a-b} \sum_{n=1}^{\infty} \frac{\left(y ; q^{2}\right)_{n} x^{n} q^{a n^{2}+(b-2 a) n}}{\left(x y ; q^{2}\right)_{n}\left(-q^{a+b} ; q^{2 a}\right)_{n}}\right)
\end{align*}
$$

For (5.12), set $a=1, b=2, y=-q^{2}$, and $x=-1$. Replace q with $-q$, divide both sides by $(1-q)\left(1-q^{2}\right)$ and use Slater's identity $\mathbf{6 9}$ to sum the resulting left side:

$$
\sum_{n=0}^{\infty} \frac{\left(-q^{2} ; q^{2}\right)_{n} q^{n^{2}+2 n}}{(q ; q)_{2 n+2}}=\left(-q^{2},-q^{14}, q^{16} ; q^{16}\right)_{\infty} \frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}} .
$$

The result follows after some slight manipulation.

The proof of (5.13) is similar, except we set $a=1, b=0, y=-1$, and $x=-1$, replace q with $-q$, and use Slater's identity 121:

$$
1+\sum_{n=1}^{\infty} \frac{\left(-q^{2} ; q^{2}\right)_{n-1} q^{n^{2}}}{(q ; q)_{2 n}}=\frac{\left(q^{2}, q^{14}, q^{16} ; q^{16}\right)_{\infty}\left(q^{12}, q^{20} ; q^{32}\right)_{\infty}}{(q ; q)_{\infty}}
$$

6. Representation of False Theta Series as basic Hypergeometric Series

In this section we derive some new representations of the false theta series $\sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1) / 2}$ and $\sum_{n=0}^{\infty} q^{n(3 n+1) / 2}\left(1-q^{2 n+1}\right)$, as basic hypergeometric series.

On page 13 of the Lost Notebook [16] (see also [3, page 229]), Ramanujan recorded the following identity (amongst others in a similar vein):

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(q ; q^{2}\right)_{n}(-1)^{n} q^{n^{2}+n}}{(-q ; q)_{2 n+1}}=\sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1) / 2} \tag{6.1}
\end{equation*}
$$

On page 37 of the Lost Notebook, he recorded the identities

$$
\begin{align*}
\sum_{n=0}^{\infty} q^{n(3 n+1) / 2}\left(1-q^{2 n+1}\right) & =\sum_{n=0}^{\infty} \frac{q^{2 n^{2}+n}}{(-q ; q)_{2 n+1}} \tag{6.2}\\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2}}{(-q ; q)_{n}}
\end{align*}
$$

The identity that follows from equating the left side to the second right side above also follows as a special case of a more general identity first stated by Rogers [18].

We use these identities in conjunction with (5.14) to prove the following.

Corollary 15.

$$
\begin{gather*}
1-\sum_{n=0}^{\infty} \frac{\left(q ; q^{2}\right)_{n}(-1)^{n} q^{n^{2}-n}}{(-1 ; q)_{2 n+1}}=\sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1) / 2} \tag{6.3}\\
\frac{2}{1+q}-\sum_{n=0}^{\infty} \frac{q^{2 n^{2}+3 n}}{(-q ; q)_{2 n+1}\left(1+q^{2 n+3}\right)}=\sum_{n=0}^{\infty} q^{n(3 n+1) / 2}\left(1-q^{2 n+1}\right) \tag{6.4}\\
\frac{1}{2}+\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2}}{(-1 ; q)_{n+2}}=\sum_{n=0}^{\infty} q^{n(3 n+1) / 2}\left(1-q^{2 n+1}\right) \tag{6.5}
\end{gather*}
$$

Proof. For (6.3), set $a=b=1, y=q$ and $x=-1$ in (5.14). Then divide both sides of the resulting identity by $1+q$, so that the left side becomes the left side of (6.1). The result follows after re-indexing the resulting sum on the right side, together with a little manipulation.

For (6.4), replace x with x / y in (5.14) and let $y \rightarrow \infty$ to get

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(-x)^{n} q^{(a+1) n^{2}+(b-1) n}}{\left(q^{2} x ; q^{2}\right)_{n}\left(-q^{a+b} ; q^{2 a}\right)_{n}} \tag{6.6}\\
&=(1-x)\left(1-q^{a-b} \sum_{n=1}^{\infty} \frac{(-x)^{n} q^{(a+1) n^{2}+(b-2 a-1) n}}{\left(x ; q^{2}\right)_{n}\left(-q^{a+b} ; q^{2 a}\right)_{n}}\right)
\end{align*}
$$

Then set $a=1, b=2, x=-1$, and divide both sides by $1+q$ so that the left side becomes the first right side of (6.2). The result again follows, upon re-indexing the sum on the right side.

To get (6.3), set $y=0$ in (5.14), then $a=b=1 / 2$ and $x=-1$, so the left side becomes the second right side in (6.2). The result likewise follows after re-indexing the resulting sum on the right side.

References

[1] George E. Andrews, Bailey's transform, lemma, chains and tree. Special functions 2000: current perspective and future directions (Tempe, AZ), 1-22, NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001.
[2] George Andrews; Alexander Berkovich. The WP-Bailey tree and its implications. J. London Math. Soc. (2) 66 (2002), no. 3, 529-549.
[3] G.E. Andrews and B.C. Berndt, Ramanujan's Lost Notebook, Part 1, Springer, New York (2005).
[4] W. N. Bailey, Some Identities in Combinatory Analysis. Proc. London Math. Soc. 49 (1947) 421-435.
[5] W. N. Bailey, Identities of the Rogers-Ramanujan type. Proc. London Math. Soc., 50 (1949) 1-10.
[6] Peter Borwein; Petr Lisoněk; Colin Percival. Computational investigations of the Prouhet-Tarry-Escott problem. Math. Comp. 72 (2003), no. 244, 2063-2070 (electronic).
[7] David Bressoud, Some identities for terminating q-series. Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 2, 211-223.
[8] Jack Chernick; Ideal Solutions of the Tarry-Escott Problem. Amer. Math. Monthly 44 (1937), no. 10, 626-633.
[9] G. Gasper, Summation, transformation, and expansion formulas for bibasic series, Trans. Amer. Math. Soc., 312 (1989), 257-277.
[10] George Gasper; Mizan Rahman An indefinite bibasic summation formula and some quadratic, cubic and quartic summation and trans-formation formulas. Can. J. Math. 42 (1990), 1-27.
[11] Ira Gessel; Dennis Stanton. Applications of q-Lagrange inversion to basic hypergeometric series. Trans. Amer. Math. Soc. 277 (1983), no. 1, 173-201.
[12] Basil Gordon,Some continued fractions of the Rogers-Ramanujan type. Duke Math. J. 321965 741-748.
[13] H. Göllnitz,Partitionen mit Differenzenbedingungen. J. reine angew. Math. 225 (1967) 154-190.
[14] Q. Liu; X. Ma On the Characteristic Equation of Well-Poised Baily Chains - To appear.
[15] Carlos J. Moreno; Samuel S. Wagstaff, Jr. Sums of squares of integers. Discrete Mathematics and its Applications (Boca Raton). Chapman \& Hall/CRC, Boca Raton, FL, 2006. xii +354 pp.
[16] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.
[17] L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math.Soc. 25 (1894),pp. 318-343.
[18] L. J. Rogers, On two theorems of combinatory analysis and some allied identities, Proc. London Math. Soc. 16 (1917) 315-336.
[19] Chen Shuwen, The Prouhet-Tarry-Escott Problem. http://euler.free.fr/eslp/TarryPrb.htm
[20] U. B. Singh, A note on a transformation of Bailey. Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 177, 111-116.
[21] L. J. Slater, A new proof of Rogers's transformations of infinite series. Proc. London Math. Soc. (2) 53, (1951). 460-475.
[22] L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math.Soc. 54 (1952) 147-167.
[23] V. P. Spiridonov, An elliptic incarnation of the Bailey chain. Int. Math. Res. Not. 2002, no. 37, 1945-1977.
[24] M. V. Subbarao; A. Verma. Some summations of q-series by telescoping. Pacific J. Math. 191 (1999), no. 1, 173-182.
[25] S. O. Warnaar, Extensions of the well-poised and elliptic well-poised Bailey lemma. Indag. Math. (N.S.) 14 (2003), no. 3-4, 571-588.

Mathematics Department, Anderson Hall, West Chester University, West Chester, PA 19383

E-mail address: jmclaughl@wcupa.edu
Mathematics Department, Anderson Hall, West Chester University, West Chester, PA 19383

E-mail address: pzimmer@wcupa.edu

[^0]: Date: November 14, 2008.
 2000 Mathematics Subject Classification. Primary: 33D15. Secondary:11B65, 05A19.
 Key words and phrases. Q-Series, Rogers-Ramanujan Type Identities, Bailey chains, Prouhet-Tarry-Escott Problem.

