McKibben Webster – Chapter 2 Partial Solutions and Hints (Part 2)

- 2.6.1 These follow from the corresponding properties of real numbers.
- 2.6.2 (i) Circle centered at (0,0) with radius ε
 - (ii) Points outside a sphere centered at (1,0,0) with radius ε
 - (iii) $\left\{ \overrightarrow{x_0} \right\}$
- 2.6.3 (i) Use the triangle inequality for the first inequality and Young's inequality for the second.

(ii) The strategy is the same, but with more terms.

- 2.6.4 (i) (v) follow directly from the definition.
 - (vi) The hypothesis implies that $\langle \mathbf{x} \mathbf{y}, \mathbf{z} \rangle = 0$, $\forall \mathbf{z} \in \mathbb{R}^{N}$. Choose $\mathbf{z} = \mathbf{x} \mathbf{y}$ and calculate. Now what?
- 2.6.5 A circle or sphere centered at \mathbf{x}_0 with radius ε .
- 2.6.6 (i), (iii), (iv) Yes (ii) No

(ii)
$$A^{-1} = \begin{bmatrix} a^{-1} & 0 \\ 0 & b^{-1} \end{bmatrix}; a^{-1}, b^{-1}$$

(iii)
$$\lambda^{-1}$$

2.7.1 (i) As $0 < |t-a| \to 0$, $||f(t) - L||_{\mathbb{R}^N} \to 0$, where $L \in \mathbb{R}^N$.

(ii) As
$$0 < |t-a| \to 0$$
, $||F(t) - L||_{M^N} \to 0$, where $L \in M^N$.

2.7.2 (i) <2, 0, -1>

- (ii) $\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$
- (iii) DNE

2.7.3 (i) As
$$0 < |t-a| \to 0$$
, $||f(t) - f(a)||_{\mathbb{R}^N} \to 0$

(ii) As
$$0 < |t-a| \to 0$$
, $||F(t) - F(a)||_{M^N} \to 0$

(iii) $h(\mathbb{R}) \subset domF$ and h, F are both continuous on their domains

- 2.7.4 (i) $\lim_{t \to a} G(t)$, provided this limit exists
 - (ii) Similar to (i) use the product rule for limits

(iii) Same as (i) because the mapping $t \mapsto \frac{t}{\beta}$ is a continuous mapping. Tell why.

2.7.5 For every M > 0, show there exists $\delta > 0$ for which $h \in (-\delta, \delta)$ and

$$\left|\frac{f(c+h) - f(c)}{h}\right| \ge M$$

- 2.7.6 (i) and (ii) Invoke Exercise 2.7.1. Tell how and why you can use this.
- 2.7.7 $(\alpha F)' = \alpha F'$. Use the result of Exercise 2.7.6 to prove this.
- 2.7.8 (i) Use Exercise 2.7.7
 - (ii) Think "product rule"
 - (iii) Think "product rule" and chain rule to differentiate $t \mapsto h\left(\frac{t}{\beta}\right)$.
- 2.7.9 Yes. You can use the known result for real-valued functions and apply it componentwise using Exercise 2.7.6 (i). Tell how carefully.
- 2.7.10 (i) and (ii) Since the integral is a limit, invoke Exercise 2.7.1. Tell how carefully.

2.7.11
$$\begin{bmatrix} A & B & O \\ B & A & C \\ 0 & C & A \end{bmatrix}$$
, where $A = e^{t} (-te^{-t} - e^{-t} + 1), B = e^{t} (-e^{-t} + 1), C = e^{t} (-1 + e^{-t}).$

- 2.7.12 (i) Limit of a sequence of vectors is computed componentwise
 - (ii) Same as (i)
 - (iii) Componentwise computations work in \mathbb{R}^N
- 2.7.13 Mimic Exercise 2.5.7 (i). Tell how.

2.7.14 The series is geometric given by $\sum_{m=p}^{\infty} \left(\frac{1}{|a|^2}\right)^p$. So what?

2.7.15 The series is geometric given by $\sum_{m=p}^{\infty} \left(\frac{1}{6}\right)^{p}$. So what?

2.7.16
$$||f(t)|| \le \sqrt{a^2 + b^2 + c^2}$$
, for every *t*. Why? So what?

2.7.17 The norm of both components is less than or equal to 1, for every *t*. Why? So what?2.7.18 Yes.

2.7.19 (i) They must go to zero.

- (ii) The diagonal entries go to1 and all other entries go to zero.
- (iii) Limits are computed componentwise. So what?

2.7.20 (i)
$$||A_m x - Ax|| = ||(A_m - A)x||$$
. So what?
(ii) $||Ax_m - Ax|| \le ||A|| ||x_m - x||$. So what?

- (iii) $||A_m x_m Ax|| = ||A_m x_m Ax_m + Ax_m Ax|| \le ||A_m A|| ||x_m|| + ||A|| ||x_m x||$. Now use (i) and (ii).
- 2.8.1 (i) Separate the variables as $\sin(\pi y)dy = e^{2x}dx$.

(ii) Simply integrate both sides with respect to *x*.

(iii)
$$(1-y^3)dy = \sum_{i=1}^N a_i \sin(b_i x) dx$$
. Now continue...

- 2.8.3 The equation is linear use (2.44) directly.
- 2.8.4 (i) m_1 and m_2 must have negative real parts. Why?

(ii) The real parts of m_1 and m_2 are less than or equal to zero. Why?