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4.3.1 A scalar multiple of a square matrix is a square matrix with the same dimensions, as are 
powers of such matrices.  Also, sums of matrices are computed entrywise.  So what? 

4.3.2 
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  .  Tell why. 

4.3.3 Use Definition 4.3.1 directly.  Compute  1 k
P DP  .  How does this simplify?  So what? 

4.3.4  Differentiate using the chain rule and then use l’Hopital’s rule to compute the limit as 
n  . 

4.3.5  Mimic the approach used in Example 4.3.1 carefully.  

4.3.6 (i)  Use the usual inverse formula for a 2x2 matrix. 

 (ii) Argue inductively. 
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4.5.1 The matrices A and A  commute.  How do you use this with the definition when 

simplifying ( )A t Ate e  ? 

4.5.2 (i)  Use Example 4.3.1 to compute Ate  . Then, simplify the quantity at which you are 
calculating the limit, and then compute the limit componentwise. 



(ii) The power series for Ate  is convergent and so, you can apply the linearity properties 
of convergent series. So, you can bring the A inside the summation. So what? 

4.5.3 The integral of a matrix-valued function is performed entrywise. All matrices involved in 
both parts are diagonal, which makes the computations easy.  Tell how. 
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  (using the change of variable trick).  Use Putzer’s algorithm to get  
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 The solution y(t) is the first row of this vector.  

 (ii)  0   only. Tell why.  

4.7.2 (i)  1    
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 (iii)  6     

4.8.1 Show that  
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 and then conclude that the desired limit is zero. 

4.8.2 (i) This follows immediately from (4.67) 

 (ii)  Apply the power series definition to compute all exponential matrices involved. The  

result follows from how matrices are multiplied. 

 (iii)  Compute these using Putzer’s algorithm.  

4.8.3 (ii)  This enables you to perform the operations used in (4.67).  So what? 

4.8.4 Mimic the development of the result following Exercise 4.8.1, step by step.  It is 

sufficient to assume that AB B A  , where A
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4.9.1 For instance… 

 (ii)  , 0     solution curves become unbounded 

 (iii)  0, 0     solution curves become unbounded for all nonzero initial 

conditions 

 (iv)  0, 0     limit exists, so the behavior exhibited by the solution curves is 

stable.  
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4.10.1 The presence of the nonzero right side is the new wrinkle! 

4.10.2 Add ( )tF  to the right side of (HCP) 

 

 


