
McKibben Webster – Chapter 5 Partial Solutions and Hints  

 

5.2.1 Yes, a classical solution is a mild solution because you can simply integrate both sides of 
(NON-CP).  The converse, however, is false because a continuous function need not be 
differentiable.  

5.3.1 Line 3: Product rule for matrix functions 

 Line 4: Equivalent functions have the same antiderivative 

 Line 5: Fundamental Theorem of Calculus 

 Lines 6 – 7: Standard matrix operations 

 Line 8: Linearity of the integral 

5.3.2 The mapping
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t g s ds is differentiable whenever g(s) is continuous.  Why?  So 

what?  
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5.3.5 (i) Use any discontinuous function for any component of F(t). 

 (iii) Use 
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 .  Such a function is not integrable on any bounded interval 

containing zero.  So, the mild solution does not exist whenever the initial condition is 
prescribed at t = 0.  

5.4.1 It goes to zero. Mimic the details of the corresponding result in Chapter 4.  


