McKibben Webster - Chapter 7 Partial Solutions and Hints

7.2.1 (i) $x=0$ is one solution. Find another using separation of variables.
(ii)(a) This follows directly by using separation of variables.
7.4.1 $\lim _{n \rightarrow \infty} \frac{3\left(\frac{1}{n}\right)^{5 / 8}}{\frac{1}{n}}=\infty$
7.4.2 This condition when M_{g} is constant means the chord line slopes are uniformly bounded. If M_{g} depends on t, then the condition is different and is "local" in nature.
7.4.3 (i) Use $\delta=\frac{\varepsilon}{M_{f}+1}$ in the definition of continuity. Tell how.
(ii) Take $f(x)=\sqrt{x}$ on $[0,1]$.
(iii) Use the Mean Value Theorem in the proof.
(iv) Use $f(x)=\left\{\begin{array}{cl}\sin \left(\frac{1}{x}\right), & 0<x \leq 1 \\ 0, & x=0\end{array}\right.$
7.4.4 Yes. Use $\left\|\sum_{i=1}^{n}\left(f_{i}(x)-f_{i}(y)\right)\right\| \leq \sum_{i=1}^{n}\left\|f_{i}(x)-f_{i}(y)\right\|$. How?
7.4.5 (i) This follows because

$$
\begin{aligned}
|f(x)-f(y)| & =|x-y||x+y| \\
& \leq|x-y|[|x|+|y|] \\
& \leq|x-y| \cdot \max \{|a|,|b|\}
\end{aligned}
$$

(ii) No. The chord line slopes are not uniformly bounded. A sequence of intervals can be formed for which the absolute values of the chord line slopes become infinite.
7.5.1 Because $M=0$ (in the lemma itself) in this application.

