McKibben Webster - Chapter 2 Partial Solutions and Hints

Ex. 2.1.1:

i) $\quad \mathrm{P}(\mathrm{x})$ doesn't hold for all x
ii) There exists at least one x such that $\mathrm{P}(\mathrm{x})$ doesn't hold

Ex. 2.2.1:

i)
a. If $A \subseteq B$ then, all $x \in A$ are $x \in B$. By contra positive, if $x \notin B$ then $x \notin A$. So, $B^{c} \subseteq A^{c}$ as desired.
b. If $B^{c} \subseteq A^{c}$ then, if $x \notin B$ then $x \notin A$ and all $x \in B^{c}$ then $x \in A^{c}$. By contra positive, if $x \notin A^{c}$ then $x \notin B^{c}$ or all $x \in A$ are $x \in B$ and we know that $A \subseteq B$ as desired.
ii)
a. If $x \in A$, then either $x \in B$ or $x \notin B$:
i. If $x \in B$, then $x \in A$ and $x \in B$. So, $x \in(A \cap B)$ and $x \in((A \cap B) \cup(A \backslash B))$ as desired.
ii. If $x \notin B$ then $x \in A$ but, $x \notin B$. So, $x \in(A \backslash B)$ and $x \in((A \cap B) \cup(A \backslash B))$
b. If $x \in((A \cap B) \cup(A \backslash B))$ then either $x \in(A \cap B)$ or $x \in(A \backslash B)$
i. If $x \in(A \cap B)$ then $x \in A$ and $x \in B$. So, $x \in A$ as desired.
ii. If $x \in(A \backslash B)$ then $x \in A$ and $x \notin B$. So, $x \in A$ as desired.
iii)
a. If $x \in(A \cap(B \cup C))$ then $x \in A$ and either $x \in B$ or $x \in C$. So, either $x \in A$ and $x \in B$ or $x \in A$ and $x \in C$. So, $x \in((A \cap B) \cup(A \cap C))$
b. If $x \in((A \cap B) \cup(A \cap C))$ then either $x \in A$ and $x \in B$ or $x \in A$ and $x \in C$. So, $x \in A$ and either $x \in B$ or $x \in C$. So, $x \in(A \cap(B \cup C))$.
iv)
a. If $x \in(A \cap B)^{c}$, then $x \notin(A \cap B)$ and either $x \in A$ and $x \notin B$ or $x \notin A$ and $x \in B$ then $x \in\left(A^{c} \cup B^{c}\right) \quad B \not \subset A$
b. If $x \in\left(A^{c} \cup B^{c}\right)$ then either $x \notin A$ or $x \notin B$, either way, $x \notin(A \cap B)$. Thus, $x \in(A \cap B)^{c}$
v)
a. If $x \in(A \cup B)^{c}$ then $x \notin A$ and $x \notin B$. So, $x \in A^{c}$ and $x \in B^{c}$, then we know that $x \in\left(A^{c} \cap B^{c}\right)$
b. If $x \in\left(A^{c} \cap B^{c}\right)$ then $x \in A^{c}$ and $x \in B^{c}$. So, $x \notin A$ and $x \notin B$, then we know that $x \in(A \cup B)^{c}$

Ex. 2.2.2:

To show that $A \neq B$, we either show that $A \not \subset B$ or that $B \not \subset A$, by showing if $x \in A$ then $x \notin B$ or vise versa.

Ex. 2.3.1:

If $\operatorname{dom}(\mathrm{f})=\operatorname{dom}(\mathrm{g})$ and $\operatorname{rng}(\mathrm{f})=\mathrm{rng}(\mathrm{g})$, then the functions f and g are equal.

Ex. 2.3.3:

Let $f(x)=x^{2}$ and $g(x)=x+1$ then;
$f(g(x))=(x+1)^{2}=x^{2}+2 x+1 ;$
$g(f(x))=x^{2}+1$
Thus, for $x \neq 0$ we know $f(x) \neq g(x)$

Ex. 2.3.3:

i) Let $\operatorname{dom}(\mathrm{f})=\mathrm{x}$ and $\operatorname{dom}(\mathrm{g})=\mathrm{A}$ then since f is onto, then there exists $a \notin A$ such that $\mathrm{f}(\mathrm{x})=\mathrm{a}$. Then $\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{g}(\mathrm{a})$ and since g is onto, then there exists $b \notin B$ such that for some $a \notin A, \mathrm{f}(\mathrm{a})=\mathrm{b}$. Then $\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{f}(\mathrm{a})=\mathrm{b}$ and $g \circ f(x)$ is onto as desired.
ii) If $f(f(a))=f(g(b))$, then since f is one-to-one, $g(a)=g(b)$ and because g is one-to-one $\mathrm{a}=\mathrm{b}$. $\operatorname{So} \mathrm{f}(\mathrm{g}(\mathrm{x}))$ is one-to-one as desired.

Ex. 2.3.4:

i) $\quad \min (S)=-\infty$ for all $x \leq y$
ii) $\quad(f-g)(x) \leq(f-g)(y)$ for all $x \leq y$
iii) For $\frac{f}{g}(x)$ let $f(x)=x-1$ and $g(x)=\frac{1}{x^{2}-1}$ then $\frac{f}{g}(x)=\frac{x-1}{x^{2}-1}=\frac{(x-1)}{(x-1)(x+1)}=\frac{1}{x+1}$ and the inequality doesn't hold.
iv) For $g \circ f(x)$ let $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ be the same as in (iii) then $g \circ f(x)=\frac{1}{(x-1)^{2}-1}=\frac{1}{x^{2}-2 x+1-1}=\frac{1}{x^{2}-2 x}$ and the inequality doesn't hold.

Ex. 2.4.1:

i) $\quad \mathrm{X}=3$
ii) $\quad \mathrm{X}=-8,-4$

Ex. 2.4.2:

i) $\quad \max =\varnothing, \sup =14, \min =\varnothing$, inf $=-1$
ii) $\max =\varnothing, \sup =\infty, \min =2, \inf =2$
iii) $\max =2, \sup =2, \min =\varnothing, \inf =1$
iv) $\max =\varnothing, \sup =\infty, \min =\varnothing, \inf =0$
v) $\max =\varnothing, \sup =\varnothing, \min =\varnothing, \inf =\varnothing$
vi) $\max =\varnothing, \sup =1, \min =\varnothing, \inf =-1$
vii) $\quad \max =\sqrt{2}, \sup =\sqrt{2}, \min =\sqrt{2}, \inf =-\sqrt{2}$
viii) $\max =\varnothing, \sup =1, \min =0, \inf =0$

Ex. 2.4.3:

i) By showing $\max (S)=\infty$
ii) By showing $\min (S)=-\infty$

Ex. 2.5.1:

If x_{n} is nondecreasing, then $x_{n} \leq x_{n+1}$ for all $n \in \mathbb{N}$ there for $\inf \left(\mathrm{x}_{\mathrm{n}}\right)=\mathrm{x}_{1}$
If x_{n} is nonincreasing, then $x_{n} \geq x_{n+1}$ for all $n \in \mathbb{N}$ there for $\sup \left(\mathrm{x}_{\mathrm{n}}\right)=\mathrm{x}_{1}$

Ex. 2.5.2:

i) Decreasing, bounded above by $1 / 3$
ii) Bounded above by 1 and below by -1
iii) Bounded above and below by 1 and -1
iv) Is bounded below by $16 / 9$ and is increasing
v) Bounded below by -4 and above by 1 .

MatLab-Ex. 2.5.1:
i)
a. Works
b. Yes, since $\left|\frac{\sin (1)}{1}\right|<\left|\frac{\sin (50)}{50}\right|$
c. $\left|\frac{\sin (500)}{500}\right|<\left|\frac{\sin (600)}{600}\right|$
d. $\mathrm{N}=9$
e. $\varepsilon=0.01, \mathrm{~N}=989 ; \varepsilon=0.0001, \mathrm{~N}=9996$

Ex. 2.5.3:

Because if $\lim _{x \rightarrow \infty} x_{n}=\infty$ then $\left|x_{n}-\infty\right|>\varepsilon$ for all $\varepsilon>0$
$\mathrm{E}^{\mathrm{n}}, \mathrm{n}^{\mathrm{n}}$, and 2^{n}
True
For all $\mathrm{M}<0$, there exists $N \in \mathbb{N}$ such that when $n \geq N$, it is the case $x_{n} \leq M$.
MatLab-Ex. 2.5.2:
i)
a. Works
b. Yes
c. $\mathrm{N}=102$
d. $\mathrm{M}=200, \mathrm{~N}=202 ; \mathrm{M}=500, \mathrm{~N}=502$
e. $\mathrm{N}=\mathrm{M}+2$
ii)
a. $\lim _{n \rightarrow \infty}-n(\cos (n)+2)^{2}=-\infty$
b. $\mathrm{N}=92$
c. $\mathrm{M}=200, \mathrm{~N}=99 ; \mathrm{M}=300, \mathrm{~N}=287 ; \mathrm{M}=500, \mathrm{~N}=488 ; \mathrm{M}=400, \mathrm{~N}=400$
d. No, the second equation is oscillating

Ex. 2.5.4:

i) There's only 1 limit for a convergent sequence
ii) If $x_{n} \rightarrow x$, there exists $y, z \in \mathbb{R}$ such that $y>x_{n}$ and $z<x_{n}$ for all $n \in \mathbb{N}$
iii) If x_{n} is bounded above and below by 2 convergent sequences that converge to the same point then $x_{n} \rightarrow p$
a. $\quad x_{n}+y_{n} \rightarrow L+M$
b. $\quad x_{n} y_{n} \rightarrow L M$
$\frac{x_{n}}{y_{n}} \rightarrow \frac{L}{M}$

Ex. 2.5.5:

i) Theorem 2.5.1 (v)(b)
ii) Theorem 2.5.1

Ex. 2.5.6:
Y_{n} is bounded, so there exist a and b such that $\mathrm{a}<\mathrm{y}_{\mathrm{n}}$ and $\mathrm{y}_{\mathrm{n}}<\mathrm{b}$ for all $n \in \mathbb{N}$, then y_{n} converges by the squeeze theorem.

Ex. 2.5.7:

i) If limit of x_{n} is L then the absolute value of the limit of x_{n} is the absolute value of L
ii) The limit doesn't exist

Ex. 2.5.8:

i) Since s_{n} is a sum of positive real numbers, s_{n} is nondecreasing. If s_{n} is bounded above then by theorem 2.5. (vi) converges. If it has an upper bound if s_{n} converges to s , then s_{n} is bounded by theorem 2.5. (ii)
ii) There exists $N \in \mathbb{N}$ such that $\mathrm{a}^{\mathrm{N}}<\mathrm{N}$! for all $n \geq N$ thus $\lim _{n \rightarrow \infty} \frac{a^{N}}{N!}=0$

MatLab -Ex. 2.5.3:
i)
a. $\quad \varepsilon=0.01, \mathrm{~N}=194 ; \varepsilon=0.001, \mathrm{~N}=1988$
b. Done

