McKibben Webster - Chapter 2 Partial Solutions and Hints

Ex. 2.1.1:

- i) P(x) doesn't hold for all x
- ii) There exists at least one x such that P(x) doesn't hold

Ex. 2.2.1:

- i)
- a. If $A \subseteq B$ then, all $x \in A$ are $x \in B$. By contra positive, if $x \notin B$ then $x \notin A$. So, $B^c \subseteq A^c$ as desired.
- b. If $B^c \subseteq A^c$ then, if $x \notin B$ then $x \notin A$ and all $x \in B^c$ then $x \in A^c$. By contra positive, if $x \notin A^c$ then $x \notin B^c$ or all $x \in A$ are $x \in B$ and we know that $A \subseteq B$ as desired.

ii)

- a. If $x \in A$, then either $x \in B$ or $x \notin B$:
 - i. If $x \in B$, then $x \in A$ and $x \in B$. So, $x \in (A \cap B)$ and $x \in ((A \cap B) \cup (A \setminus B))$ as desired.
 - ii. If $x \notin B$ then $x \in A$ but, $x \notin B$. So, $x \in (A \setminus B)$ and $x \in ((A \cap B) \cup (A \setminus B))$
- b. If $x \in ((A \cap B) \cup (A \setminus B))$ then either $x \in (A \cap B)$ or $x \in (A \setminus B)$
 - i. If $x \in (A \cap B)$ then $x \in A$ and $x \in B$. So, $x \in A$ as desired.
 - ii. If $x \in (A \setminus B)$ then $x \in A$ and $x \notin B$. So, $x \in A$ as desired.

iii)

- a. If $x \in (A \cap (B \cup C))$ then $x \in A$ and either $x \in B$ or $x \in C$. So, either $x \in A$ and $x \in B$ or $x \in A$ and $x \in C$. So, $x \in ((A \cap B) \cup (A \cap C))$
- b. If $x \in ((A \cap B) \cup (A \cap C))$ then either $x \in A$ and $x \in B$ or $x \in A$ and $x \in C$. So, $x \in A$ and either $x \in B$ or $x \in C$. So, $x \in (A \cap (B \cup C))$.

iv)

- a. If $x \in (A \cap B)^c$, then $x \notin (A \cap B)$ and either $x \in A$ and $x \notin B$ or $x \notin A$ and $x \in B$ then $x \in (A^c \cup B^c)$ $B \not\subset A$
- b. If $x \in (A^c \cup B^c)$ then either $x \notin A$ or $x \notin B$, either way, $x \notin (A \cap B)$. Thus, $x \in (A \cap B)^c$

v)

- a. If $x \in (A \cup B)^c$ then $x \notin A$ and $x \notin B$. So, $x \in A^c$ and $x \in B^c$, then we know that $x \in (A^c \cap B^c)$
- b. If $x \in (A^c \cap B^c)$ then $x \in A^c$ and $x \in B^c$. So, $x \notin A$ and $x \notin B$, then we know that $x \in (A \cup B)^c$

Ex. 2.2.2:

To show that $A \neq B$, we either show that $A \not\subset B$ or that $B \not\subset A$, by showing if $x \in A$ then $x \notin B$ or vise versa.

Ex. 2.3.1:

If dom(f)=dom(g) and rng(f)=rng(g), then the functions f and g are equal.

Ex. 2.3.3:

Let $f(x) = x^2$ and g(x) = x + 1 then;

$$f(g(x)) = (x+1)^2 = x^2 + 2x + 1;$$

 $g(f(x)) = x^2 + 1$

Thus, for $x \neq 0$ we know $f(x) \neq g(x)$

Ex. 2.3.3:

- Let dom(f) =x and dom(g)=A then since f is onto, then there exists a ∉ A such that f(x)=a. Then g(f(x))=g(a) and since g is onto, then there exists b ∉ B such that for some a ∉ A, f(a)=b. Then g(f(x))=f(a)=b and g ∘ f(x) is onto as desired.
- ii) If f(f(a))=f(g(b)), then since f is one-to-one, g(a)=g(b) and because g is one-to-one a=b. So f(g(x)) is one-to-one as desired.

Ex. 2.3.4:

i) $\min(S) = -\infty$ for all $x \le y$

ii)
$$(f-g)(x) \le (f-g)(y)$$
 for all $x \le y$

iii) For
$$\frac{f}{g}(x)$$
 let $f(x) = x - 1$ and $g(x) = \frac{1}{x^2 - 1}$ then $\frac{f}{g}(x) = \frac{x - 1}{x^2 - 1} = \frac{(x - 1)}{(x - 1)(x + 1)} = \frac{1}{x + 1}$

and the inequality doesn't hold.

iv) For
$$g \circ f(x)$$
 let $f(x)$ and $g(x)$ be the same as in (iii) then

$$g \circ f(x) = \frac{1}{(x-1)^2 - 1} = \frac{1}{x^2 - 2x + 1 - 1} = \frac{1}{x^2 - 2x}$$
 and the inequality doesn't hold.

Ex. 2.4.1:

- i) X=3
- ii) X=-8,-4

Ex. 2.4.2:

- i) $\max = \emptyset$, $\sup = 14$, $\min = \emptyset$, $\inf = -1$
- ii) $\max = \emptyset$, $\sup = \infty$, $\min = 2$, $\inf = 2$
- iii) max=2, sup=2, min = \emptyset , inf=1
- $\max = \emptyset$, $\sup = \infty$, $\min = \emptyset$, $\inf = 0$ iv)
- $\max = \emptyset$, $\sup = \emptyset$, $\min = \emptyset$, $\inf = \emptyset$ v)
- $\max = \emptyset$, $\sup = 1$, $\min = \emptyset$, $\inf = -1$ vi)
- $\max = \sqrt{2}$, $\sup = \sqrt{2}$, $\min = \sqrt{2}$, $\inf = -\sqrt{2}$ vii)
- $\max = \emptyset$, $\sup = 1$, $\min = 0$, $\inf = 0$ viii)

Ex. 2.4.3:

- i) By showing $\max(S) = \infty$
- ii) By showing $\min(S) = -\infty$

Ex. 2.5.1:

If x_n is nondecreasing, then $x_n \le x_{n+1}$ for all $n \in \mathbb{N}$ there for $\inf(x_n) = x_1$ If x_n is nonincreasing, then $x_n \ge x_{n+1}$ for all $n \in \mathbb{N}$ there for $\sup(x_n)=x_1$

Ex. 2.5.2:

- i) Decreasing, bounded above by 1/3
- Bounded above by 1 and below by -1 ii)
- Bounded above and below by 1 and -1 iii)
- Is bounded below by 16/9 and is increasing iv)
- v) Bounded below by -4 and above by 1.

MatLab-Ex. 2.5.1:

0

i)

a. Works
b. Yes, since
$$|\frac{\sin(1)}{1}| < |\frac{\sin(50)}{50}|$$

c. $|\frac{\sin(500)}{500}| < |\frac{\sin(600)}{600}|$
d. N=9
e. $\varepsilon = 0.01$, N=989; $\varepsilon = 0.0001$, N=9996

Ex. 2.5.3:

Because if $\lim_{x\to\infty} x_n = \infty$ then $|x_n - \infty| > \varepsilon$ for all $\varepsilon > 0$ E^n , n^n , and 2^n True For all M<0, there exists $N \in \mathbb{N}$ such that when $n \ge N$, it is the case $x_n \le M$.

MatLab-Ex. 2.5.2:

i)

- a. Works
- b. Yes
- c. N=102
- d. M=200, N=202; M=500, N=502
- e. N=M+2

ii)

- a. $\lim_{n \to \infty} -n(\cos(n)+2)^2 = -\infty$
- b. N=92
- c. M=200, N=99; M=300, N=287; M=500, N=488; M=400, N=400
- d. No, the second equation is oscillating

Ex. 2.5.4:

- i) There's only 1 limit for a convergent sequence
- ii) If $x_n \to x$, there exists $y, z \in \mathbb{R}$ such that $y > x_n$ and $z < x_n$ for all $n \in \mathbb{N}$
- iii) If x_n is bounded above and below by 2 convergent sequences that converge to the same point then $x_n \rightarrow p$
 - a. $x_n + y_n \rightarrow L + M$ b. $x_n y_n \rightarrow LM$ $\frac{x_n}{y_n} \rightarrow \frac{L}{M}$

Ex. 2.5.5:

- i) Theorem 2.5.1 (v)(b)
- ii) Theorem 2.5.1

Ex. 2.5.6:

 Y_n is bounded, so there exist a and b such that $a < y_n$ and $y_n < b$ for all $n \in \mathbb{N}$, then y_n converges by the squeeze theorem.

Ex. 2.5.7:

- i) If limit of x_n is L then the absolute value of the limit of x_n is the absolute value of L
- ii) The limit doesn't exist

Ex. 2.5.8:

i) Since s_n is a sum of positive real numbers, s_n is nondecreasing. If s_n is bounded above then by theorem 2.5. (vi) converges. If it has an upper bound if s_n converges to s, then s_n is bounded by theorem 2.5. (ii)

ii) There exists $N \in \mathbb{N}$ such that $a^N < N!$ for all $n \ge N$ thus $\lim_{n \to \infty} \frac{a^N}{N!} = 0$

MatLab – Ex. 2.5.3:

i)

- a. $\varepsilon = 0.01$, N=194; $\varepsilon = 0.001$, N=1988
- b. Done