McKibben Webster Chapter 9 – Partial Solutions and Hints

MatLab – Exercise 9.1.1

- i) Everything seems to be running properly. However, the help button doesn't seem to be working
- ii) Still seems to be running fine.
- iii) Comparing the two figures, it looks like i is faster than ii
- iv) It seem that the larger k^2 is, the easier it is for the heat to disperse
- v) My conjecture seems to be correct.
- vi) Nuemann boundary conditions
 - a. Runs fine
 - b. Still runs fine
 - c. Comparing the two figures, they look like they are similar in speed
 - d. The troughs in the waves seem shallower when k^2 is larger
 - e. My conjecture seems to be correct
- vii) Summary the equation seems to depend on k^2, because the larger k^2 is, the more diluted the equation will be.
- viii) Periodic boundary conditions
 - a. Runs fine
 - b. Still runs fine
 - c. Comparing the two figures, they look like they are similar in speed
 - d. The troughs in the waves seem shallower when k^2 is larger
 - e. My conjecture seems to be correct

Matlab-Exercise 9.1.2

- i) Runs fine, converges
- ii) Runs fine, less convergence than k^2=.1
- iii) Cos initial condition
 - a. Converges to an arc
 - b. Less convergence than $k^2=.25$
 - c. Convergence seems to depend on k^2
- iv) Step functions $K^2 = .25$ converges when k^2 is larger, does seem to depend on k^2

v) The larger the value of k^2 , the greater the convergence

Matlab-Exercise 9.1.3

- i) sin
- a. 0.5- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.4994
- b. Repeat (a)
 - i. .25- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.2497
 - ii. 0.1- Norm Difference vs. Time, Difference in parameters = 0Norm Difference between Initial Conditions = 0.9988
 - iii. 0.01- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.009988
 - iv. 0.005- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.004994
- c. Doesn't seem to depend on the initial condition
- d. Exp and step function
 - i. Exp
 - 1. .5- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.48794
 - 2. Repeat (1)
 - a. .25- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.24397
 - b. 0.1- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.097588
 - c. 0.01- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.0097588
 - d. 0.005- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.0048794
 - 3. Doesn't seem to depend on initial conditions
 - ii. Step

1. .5- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.5

- 2. Repeat (1)
 - a. .25- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.25
 - b. 0.1- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.1
 - c. 0.01- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.01
 - d. 0.005- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.005
- 3. Doesn't seem to depend on initial conditions

Note: for this part I am using perturbation size .5

- ii) Cos
 - a. 0.4- Norm Difference vs. Time, Difference in parameters = 0.1 Norm Difference between Initial Conditions = 0.99039
 - b. Repeat (a)

- i. .45- Norm Difference vs. Time, Difference in parameters = 0.05 Norm Difference between Initial Conditions = 0.99039
- ii. 0.55- Norm Difference vs. Time, Difference in parameters = 0.05 Norm Difference between Initial Conditions = 0.99039
- iii. 0.48- Norm Difference vs. Time, Difference in parameters = 0.02 Norm Difference between Initial Conditions = 0.99039
- iv. 0.51- Norm Difference vs. Time, Difference in parameters = 0.01 Norm Difference between Initial Conditions = 0.99093
- c. Doesn't seem to depend on initial conditions
- d. Exp and step function
 - i. Exp

1. .4- Norm Difference vs. Time, Difference in parameters = 0.1 Norm Difference between Initial Conditions = 0.48794

- 2. Repeat (1)
 - a. .45- Norm Difference vs. Time, Difference in parameters = 0.05 Norm Difference between Initial Conditions = 0. 48794
 - b. 0.55- Norm Difference vs. Time, Difference in parameters = 0.05 Norm Difference between Initial Conditions = 0. 48794
 - c. 0.48- Norm Difference vs. Time, Difference in parameters = 0.02 Norm Difference between Initial Conditions = 0. 48794
 - d. 0.51- Norm Difference vs. Time, Difference in parameters = 0.01 Norm Difference between Initial Conditions = 0.48794
- 3. Doesn't seem to depend on initial conditions

ii. Step

1. .4- Norm Difference vs. Time, Difference in parameters = 0.1 Norm Difference between Initial Conditions = 0.5

- 2. Repeat (1)
 - a. .45- Norm Difference vs. Time, Difference in parameters = 0.05 Norm Difference between Initial Conditions = 0.25
 - b. 0.55- Norm Difference vs. Time, Difference in parameters = 0.05 Norm Difference between Initial Conditions = 0.1
 - c. 0.48- Norm Difference vs. Time, Difference in parameters = 0.02 Norm Difference between Initial Conditions = 0.01
 - d. 0.51- Norm Difference vs. Time, Difference in parameters = 0.01 Norm Difference between Initial Conditions = 0.005
- e. Doesn't seem to depend on initial conditions

iii) Exp

a. Diffusivity constant: 0.4- Norm Difference vs. Time, Difference in parameters = 0.1
 Perturbation size: 0.3- Norm Difference between Initial Conditions = 0.29276

- b. Repeat (a)
 - i. .45- Norm Difference vs. Time, Difference in parameters = 0.05 .15- Norm Difference between Initial Conditions = 0.14638
 - ii. 0.55- Norm Difference vs. Time, Difference in parameters = 0.050.1- Norm Difference between Initial Conditions = 0.097588
 - iii. 0.48- Norm Difference vs. Time, Difference in parameters = 0.020.01- Norm Difference between Initial Conditions = 0.0097588
 - iv. 0.51- Norm Difference vs. Time, Difference in parameters = 0.01 0.005- Norm Difference between Initial Conditions = 0.0048794

- c. Doesn't seem to depend on initial conditions
- d. Cos and step function
 - i. Cos
 - 1. .4- Norm Difference vs. Time, Difference in parameters = 0.1
 - .3- Norm Difference between Initial Conditions = 0.59424
 - 2. Repeat (1)
 - a. .45- Norm Difference vs. Time, Difference in parameters = 0.05 .15- Norm Difference between Initial Conditions = 0. 29712
 - b. 0.55- Norm Difference vs. Time, Difference in parameters = 0.05
 0.1- Norm Difference between Initial Conditions = 0.19808
 - c. 0.48- Norm Difference vs. Time, Difference in parameters = 0.02
 0.01- Norm Difference between Initial Conditions = 0. 019808
 - d. 0.51- Norm Difference vs. Time, Difference in parameters = 0.01 0.005-Norm Difference between Initial Conditions = 0.0099039
 - 3. Doesn't seem to depend on initial conditions
 - ii. Step
 - 1. .4- Norm Difference vs. Time, Difference in parameters = 0.1
 - .3- Norm Difference between Initial Conditions = 0.3
 - 2. Repeat (1)
 - a. .45- Norm Difference vs. Time, Difference in parameters = 0.05 .15- Norm Difference between Initial Conditions = 0.15
 - b. 0.55- Norm Difference vs. Time, Difference in parameters = 0.05
 0.1- Norm Difference between Initial Conditions = 0.1
 - c. 0.48- Norm Difference vs. Time, Difference in parameters = 0.02
 0.01- Norm Difference between Initial Conditions = 0.01
 - d. 0.51- Norm Difference vs. Time, Difference in parameters = 0.01 0.005-Norm Difference between Initial Conditions = 0.005
- e. Doesn't seem to depend on initial conditions
- iv) Not the case

Matlab-Exercise 9.1.4

Note: L² button is actually L2

- i) sin
- a. 0.5- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.5
- b. Repeat (a)
 - i. .25- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.25
 - ii. 0.1- Norm Difference vs. Time, Difference in parameters = 0Norm Difference between Initial Conditions = 0.1
 - iii. 0.01- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.01
 - iv. 0.005- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.005
- c. Doesn't seem to depend on the initial condition
- d. Exp and step function
 - i. Exp

- 1. .5- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.17701
- 2. Repeat (1)
 - a. .25- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.088505
 - b. 0.1- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.035402
 - c. 0.01- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.0035402
 - d. 0.005- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.0017701
- 3. Doesn't seem to depend on initial conditions

ii. Step

- 1. .5- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.5
- 2. Repeat (1)
 - a. .25- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.25
 - b. 0.1- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.1
 - c. 0.01- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.01
 - d. 0.005- Norm Difference vs. Time, Difference in parameters = 0 Norm Difference between Initial Conditions = 0.005
- 3. Doesn't seem to depend on initial conditions

Note: for this part I am using perturbation size .5

- v) Cos
 - a. 0.4- Norm Difference vs. Time, Difference in parameters = 0.1
 - Norm Difference between Initial Conditions = 0.86603
 - b. Repeat (a)
 - i. .45- Norm Difference vs. Time, Difference in parameters = 0.05 Norm Difference between Initial Conditions = 0. 86603
 - ii. 0.55- Norm Difference vs. Time, Difference in parameters = 0.05 Norm Difference between Initial Conditions = 0. 86603
 - iii. 0.48- Norm Difference vs. Time, Difference in parameters = 0.02Norm Difference between Initial Conditions = 0. 86603
 - iv. 0.51- Norm Difference vs. Time, Difference in parameters = 0.01 Norm Difference between Initial Conditions = 0. 86603
 - c. Doesn't seem to depend on initial conditions
 - d. Exp and step function
 - i. Exp
 - 1. .4- Norm Difference vs. Time, Difference in parameters = 0.1 Norm Difference between Initial Conditions = 0.17701
 - 2. Repeat (1)
 - a. .45- Norm Difference vs. Time, Difference in parameters = 0.05 Norm Difference between Initial Conditions = 0. 17701
 - b. 0.55- Norm Difference vs. Time, Difference in parameters = 0.05 Norm Difference between Initial Conditions = 0. 17701

- c. 0.48- Norm Difference vs. Time, Difference in parameters = 0.02 Norm Difference between Initial Conditions = 0. 17701
- d. 0.51- Norm Difference vs. Time, Difference in parameters = 0.01 Norm Difference between Initial Conditions = 0. 17701
- 3. Doesn't seem to depend on initial conditions
- ii. Step
 - 1. .4- Norm Difference vs. Time, Difference in parameters = 0.1 Norm Difference between Initial Conditions = 0.5
 - 2. Repeat (1)
 - a. .45- Norm Difference vs. Time, Difference in parameters = 0.05 Norm Difference between Initial Conditions = 0.5
 - b. 0.55- Norm Difference vs. Time, Difference in parameters = 0.05 Norm Difference between Initial Conditions = 0.5
 - c. 0.48- Norm Difference vs. Time, Difference in parameters = 0.02 Norm Difference between Initial Conditions = 0.5
 - d. 0.51- Norm Difference vs. Time, Difference in parameters = 0.01 Norm Difference between Initial Conditions = 0.5
- e. Doesn't seem to depend on initial conditions

vi) Exp

- a. Diffusivity constant: 0.4- Norm Difference vs. Time, Difference in parameters = 0.1
 Perturbation size: 0.3- Norm Difference between Initial Conditions = 0.10621
- b. Repeat (a)
 - i. .45- Norm Difference vs. Time, Difference in parameters = 0.05 .15- Norm Difference between Initial Conditions = 0.053103
 - ii. 0.55- Norm Difference vs. Time, Difference in parameters = 0.05
 0.1- Norm Difference between Initial Conditions = 0.035402
 - iii. 0.48- Norm Difference vs. Time, Difference in parameters = 0.020.01- Norm Difference between Initial Conditions = 0.0035402
 - iv. 0.51- Norm Difference vs. Time, Difference in parameters = 0.01 0.005- Norm Difference between Initial Conditions = 0.0017701
- c. Doesn't seem to depend on initial conditions
- d. Cos and step function
 - i. Cos
 - 1. .4- Norm Difference vs. Time, Difference in parameters = 0.1
 - .3- Norm Difference between Initial Conditions = 0.51926
 - 2. Repeat (1)
 - a. .45- Norm Difference vs. Time, Difference in parameters = 0.05 .15- Norm Difference between Initial Conditions = 0. 25981
 - b. 0.55- Norm Difference vs. Time, Difference in parameters = 0.05
 0.1- Norm Difference between Initial Conditions = 0.17321
 - c. 0.48- Norm Difference vs. Time, Difference in parameters = 0.02 0.01- Norm Difference between Initial Conditions = 0.017321
 - d. 0.51- Norm Difference vs. Time, Difference in parameters = 0.01
 0.005-Norm Difference between Initial Conditions = 0.0086603
 - 3. Doesn't seem to depend on initial conditions
 - ii. Step
 - 1. .4- Norm Difference vs. Time, Difference in parameters = 0.1
 - .3- Norm Difference between Initial Conditions = 0.3

- 2. Repeat (1)
 - a. .45- Norm Difference vs. Time, Difference in parameters = 0.05 .15- Norm Difference between Initial Conditions = 0.15
 - b. 0.55- Norm Difference vs. Time, Difference in parameters = 0.05
 0.1- Norm Difference between Initial Conditions = 0.1
 - c. 0.48- Norm Difference vs. Time, Difference in parameters = 0.02
 0.01- Norm Difference between Initial Conditions = 0.01
 - d. 0.51- Norm Difference vs. Time, Difference in parameters = 0.01 0.005-Norm Difference between Initial Conditions = 0.005

e. Doesn't seem to depend on initial conditions

ii. There is continuous dependence.

Matlab-Exercise 9.1.5

Note: Boundary Condition set to Dirichlet

- i. Sin
- a. It seems lopsided at the beginning this could be because the nonhomogeneous part off sets things to one side
- b. Nonhomogeneousness flattens out on a higher plane
- c. $T_1 = .5, T_2 = 2$
 - i. It just seems to converge to a convex line
 - ii. Homogeneousness flattens out, but nonhomogeneousness just seems to slope up

ii. Exp

- a. Nonhomogeneousness arks upward
- b. Homogeneousness has a spike that flattens out, while nonhomogeneousness has a spike that flattens into a prabolla in the opposite direction
- c. $T_1 = .5, T_2 = 2$
 - i. T_1 off sets the left side down and T_2 off sets the right side up
 - ii. Homogeneousness flattens out while nonhomogeneousness slopes up

iii.

- a. Yes, it does seem that (i) tends to a steady-state temperature for large times
- b. Homogeneousness seems to tend to a stedy-state temperature much earlier than nonhomogeneousness
- c. Yes, it does seem that (ii) tends to a steady-state temperature for large times

d. Homogeneousness seems to tend to a stedy-state temperature earlier than nonhomogeneousness

MatLab-Exercise 9.1.6

- i) Dirichlet
 - a. Runs fine
 - b. Runs fine
 - c. The heat seems to disperse much more slowly
 - d. It seems that the lower k^2 is, the slower the dispersion is. Which is the same as 9.1
 - e. The speed of the dispersion seems to be positively correlated to k^2

ii) Periodic

- a. Runs fine
- b. Runs fine
- c. Seems to run faster with higher k^2
- d. The higher k^2 is, the faster the heat dispersion, the same as 9.1
- e. The higher k^2 is the faster the heat dispersion

iii) Neumann

- a. Runs fine
- b. Runs fine
- c. Seems to run faster with higher k^2
- d. The higher k^2 is, the faster the heat dispersion, the same as 9.1
- e. The higher k^2 is the faster the heat dispersion
- iv) The higher k^2 is, the faster the heat dispersion regardless of the boundary condition

MatLab-Exercise 9.1.7

- i) Runs fine
 - a. Converges to the same function
- ii) Runs fine
 - a. Yes the solution with BC periodic converged to the same function as (i)
- iii) The bottom rises as the top falls
- iv) They all converged to the same function. However, they all converged differently

MatLab-Exercise 9.1.8

Note: Perturb Parameters & Solve is actually Modify parameters & solve

- i) Note: BC is Dirichet and k² = .5
 - a. 0.5 Norm Difference vs. Time Difference in Parameters = 0 Norm Difference between Initial Conditions = 0.5
 - b. Repeat
 - i. 0.25 Norm Difference vs. Time Difference in Parameters = 0 Norm Difference between Initial Conditions = 0.25
 - ii. 0.1 Norm Difference vs. Time Difference in Parameters = 0 Norm Difference between Initial Conditions = 0.1
 - iii. 0.01 Norm Difference vs. Time Difference in Parameters = 0 Norm Difference between Initial Conditions = 0.01
 - iv. 0.005 Norm Difference vs. Time Difference in Parameters = 0 Norm Difference between Initial Conditions = 0.005
 - c. It doesn't seem to depend on the diffusivity constant
 - d. Expo and step
 - i. Expo
 - 0.5 Norm Difference vs. Time Difference in Parameters = 0 Norm Difference between Initial Conditions = 0.099083
 - 2. Repeat
 - a. 0.25 Norm Difference vs. Time Difference in Parameters = 0 Norm Difference between Initial Conditions = 0.049542
 - b. 0.1 Norm Difference vs. Time Difference in Parameters = 0 Norm Difference between Initial Conditions = 0.019817
 - c. 0.01 Norm Difference vs. Time Difference in Parameters = 0 Norm Difference between Initial Conditions = 0.0019817
 - d. 0.005 Norm Difference vs. Time Difference in Parameters = 0 Norm Difference between Initial Conditions = 0.00099086
 - 3. It seems to depend on the diffusivity constant
 - ii. Step

1. 0.5 - Norm Difference vs. Time Difference in Parameters = 0 Norm Difference between Initial Conditions = 0.5

- 2. Repeat
 - a. 0.25 Norm Difference vs. Time Difference in Parameters = 0 Norm Difference between Initial Conditions = 0.25
 - b. 0.1 Norm Difference vs. Time Difference in Parameters = 0 Norm Difference between Initial Conditions = 0.1
 - c. 0.01 Norm Difference vs. Time Difference in Parameters = 0 Norm Difference between Initial Conditions = 0.01
 - d. 0.005 Norm Difference vs. Time Difference in Parameters = 0 Norm Difference between Initial Conditions = 0.005
- 3. It seems to depend on the diffusivity constant
- ii) BC Neumann, initial condition Cos

- a. 0.5 Norm Difference vs. Time Difference in Parameters = 0.1 Norm Difference between Initial Conditions = 1.4142
- b. Repeat
 - i. 0.45 Norm Difference vs. Time Difference in Parameters = 0.05 Norm Difference between Initial Conditions = 1.4142
 - ii. 0.55 Norm Difference vs. Time Difference in Parameters = 0.05 Norm Difference between Initial Conditions = 1.4142
 - iii. 0.48 Norm Difference vs. Time Difference in Parameters = 0.02 Norm Difference between Initial Conditions = 1.4142
 - iv. 0.51 Norm Difference vs. Time Difference in Parameters = 0.01 Norm Difference between Initial Conditions = 1.4142
- c. It seems to depend on the diffusivity constant
- d. Expo and step
 - і. Ехро
 - 1. 0.4 Norm Difference vs. Time Difference in Parameters = 0.1 Norm Difference between Initial Conditions = 0.099083
 - 2. Repeat
 - a. 0.45 Norm Difference vs. Time Difference in Parameters = 0.05 Norm Difference between Initial Conditions = 0.099083
 - b. 0.55 Norm Difference vs. Time Difference in Parameters = 0.05 Norm Difference between Initial Conditions = 0.099086
 - c. 0.48 Norm Difference vs. Time Difference in Parameters = 0.02 Norm Difference between Initial Conditions = 0.099086
 - d. 0.51 Norm Difference vs. Time Difference in Parameters = 0.01 Norm Difference between Initial Conditions = 0.099083
 - 3. It seems to depend entirely on the diffusivity constant
 - ii. Step
 - 1. 0.4 Norm Difference vs. Time Difference in Parameters = 0.1 Norm Difference between Initial Conditions = 0.5
 - 2. Repeat
 - a. 0.45 Norm Difference vs. Time Difference in Parameters = 0.05 Norm Difference between Initial Conditions = 0.25
 - b. 0.55 Norm Difference vs. Time Difference in Parameters = 0.05 Norm Difference between Initial Conditions = 0.1
 - c. 0.48 Norm Difference vs. Time Difference in Parameters = 0.02 Norm Difference between Initial Conditions = 0.01
 - d. 0.51 Norm Difference vs. Time Difference in Parameters = 0.01 Norm Difference between Initial Conditions = 0.005
 - 3. It seems to depend on the diffusivity constant
- iii) BC Periodic, initial condition expo
 - a. 0.4 Norm Difference vs. Time Difference in Parameters = 0.1
 - 0.3 Norm Difference between Initial Conditions = 3.8048
 - b. Repeat
 - i. 0.45 Norm Difference vs. Time Difference in Parameters = 0.05 0.25 - Norm Difference between Initial Conditions = 3.1707
 - ii. 0.55 Norm Difference vs. Time Difference in Parameters = 0.05
 - 0.1 Norm Difference between Initial Conditions = 1.2683
 - iii. 0.48 Norm Difference vs. Time Difference in Parameters = 0.02

- 0.01 Norm Difference between Initial Conditions = 0.1283
- iv. 0.51 Norm Difference vs. Time Difference in Parameters = 0.01
 0.005 Norm Difference between Initial Conditions = 0.063413
- c. It doesn't seem to depend on the diffusivity constant
- d. Cos and step
 - i. Cos
 - 1. 0.4 Norm Difference vs. Time Difference in Parameters = 0.1
 - 0.3 Norm Difference between Initial Conditions = 54.3058
 - 2. Repeat
 - a. 0.45 Norm Difference vs. Time Difference in Parameters = 0.05 0.25 - Norm Difference between Initial Conditions = 45.2548
 - b. 0.55 Norm Difference vs. Time Difference in Parameters = 0.05
 0.1 Norm Difference between Initial Conditions = 18.1019
 - c. 0.48 Norm Difference vs. Time Difference in Parameters = 0.02
 - 0.01 Norm Difference between Initial Conditions = 1.8102
 - d. 0.51 Norm Difference vs. Time Difference in Parameters = 0.01
 0.005 Norm Difference between Initial Conditions = 0.9051
 - 3. It seems to depend heavily on the perturbation size
 - ii. Step
 - 1. 0.4 Norm Difference vs. Time Difference in Parameters = 0.1
 - 0.3 Norm Difference between Initial Conditions = 18.6
 - 2. Repeat
 - a. 0.45 Norm Difference vs. Time Difference in Parameters = 0.05
 0.25 Norm Difference between Initial Conditions = 15.5
 - b. 0.55 Norm Difference vs. Time Difference in Parameters = 0.05
 0.1 Norm Difference between Initial Conditions = 6.2
 - c. 0.48 Norm Difference vs. Time Difference in Parameters = 0.02
 0.01 Norm Difference between Initial Conditions = 0.62
 - d. 0.51 Norm Difference vs. Time Difference in Parameters = 0.01
 0.005 Norm Difference between Initial Conditions = 0.31
 - 3. It seems to depend on the perturbation size
- iv) In 2d the difference between the initial conditions, and the perturbations is much greater than in 1d

MatLab-Exercise 9.2.1

- i) Heat was less wavy
 - a. Convergence happens much faster
 - b. The smaller α is, the slower the convergence seems to be
 - c. No convergence, possible stability
 - d. The lower β is, the slower convergence seems to be
 - e. Expo

- i. Convergence happens much faster
- ii. The smaller α is, the slower the convergence seems to be
- iii. No convergence, possible stability
- iv. The lower β is, the slower convergence seems to be
- ii) Nuemann, slower convergence
 - a. Convergence happens much faster
 - b. The smaller α is, the slower the convergence seems to be
 - c. No convergence, possible stability
 - d. The lower β is, the slower convergence seems to be
 - e. Expo
 - i. Convergence happens much faster
 - ii. The smaller α is, the slower the convergence seems to be
 - iii. No convergence, possible stability
 - iv. The lower β is, the slower convergence seems to be
- iii) Periodic, less wavy
 - a. Convergence happens much faster
 - b. The smaller α is, the slower the convergence seems to be
 - c. No convergence, possible stability
 - d. The lower β is, the slower convergence seems to be
 - e. Expo
 - i. Convergence happens much faster
 - ii. The smaller α is, the slower the convergence seems to be
 - iii. No convergence, possible stability
 - iv. The lower β is, the slower convergence seems to be
- iv) The α and β seems to be able to tweak the speed of conversion
- v) (i) the observations didn't differ
 - a. Convergence happens much faster
 - b. The smaller α is, the slower the convergence seems to be
 - c. No convergence, possible stability

d. The lower $\boldsymbol{\beta}$ is, the slower convergence seems to be

MatLab – Exercise 9.2.2

- i) Heat disperses more quickly, sine, Dirichlet
 - a. Now long-term behavior is similar to the heat equation
 - b. There is almost no convergence, this happens with very small k^2 in the heat equation
 - c. Expo, Dirichlet
 - i. Long=term behavior is the similar as the heat equation when $\alpha = 0$
 - ii. There is almost no convergence, with $\beta = 0$, this happens in the heat equation when k^2 is very small
- ii) Fluid seepage converges slower than the heat equation under these conditions, Cos, Nuemann
 - a. Now long-term behavior is similar to the heat equation
 - b. There is almost no convergence, this happens with very small k^2 in the heat equation
 - c. Expo, Nuemann
 - i. Long=term behavior is the similar as the heat equation when $\alpha = 0$
 - ii. There is almost no convergence, with $\beta = 0$, this happens in the heat equation when k² is very small
- iii) Periodic, Cos, Fluid seepage converges slower than the heat equation
 - a. Now long-term behavior is similar to the heat equation
 - b. There is almost no convergence, this happens with very small k^2 in the heat equation
 - c. Expo, Periodic
 - i. Long=term behavior is the similar as the heat equation when $\alpha = 0$
 - ii. There is almost no convergence, with β = 0, this happens in the heat equation when k^2 is very small
- iv) With α very small or 0, and/or β very large, the fluid seepage equation can converge similarly as the heat equation, with (k^2) = 1. With k^2 very small in the heat equation convergence is similar to β very small or 0 in the fluid seepage equation.
- v) Periodic, step, heat equation disperses more quickly
 - a. Now long-term behavior is similar to the heat equation
 - b. There is almost no convergence, this happens with very small k^2 in the heat equation
 - c. Expo, Periodic
 - i. Long=term behavior is the similar as the heat equation when $\alpha = 0$
 - ii. There is almost no convergence, with $\beta = 0$, this happens in the heat equation when k^2 is very small
 - iii. This is the same as the other condition and compare to the heat equation.

MatLab – Exercise 9.2.3

- a. 0.5 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.5
- b. Repeat
 - i. 0.25 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.25
 - ii. 0.1 Norm Different vs. Time, Different Parameters = 0Norm Different between Initial Conditions = 0.1
 - iii. 0.01 Norm Different vs. Time, Different Parameters = 0Norm Different between Initial Conditions = 0.01
 - iv. 0.005 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.005
- c. Seems to be dependent on initial conditions
- d. Expo, step
 - i. Expo
 - 0.5 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.11129
 - 2. Repeat
 - a. 0.25 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.055645
 - b. 0.1 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.022258
 - c. 0.01 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.0022258
 - d. 0.005 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.0011129
 - 3. Seems to be dependent on initial conditions
 - ii. Step
 - 0.5 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.5
 - 2. Repeat
 - e. 0.25 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.25
 - f. 0.1 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.1
 - g. 0.01 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.01
 - h. 0.005 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.005
 - 3. Seems to be dependent on initial conditions
- e. The fluid seepage equation seems to correspond with the heat equation
- ii) Cos
 - a. 1.1 Norm Different vs. Time, Different Parameters = 0.1

Norm Different between Initial Conditions = 0

- b. Repeat with α values
 - v. 0.9 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - vi. 0.98 Norm Different vs. Time, Different Parameters = 0.02 Norm Different between Initial Conditions = 0.
 - vii. 1.01 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
- c. Seems to be dependent on initial conditions
- d. Repeat with β values
 - i. 2.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - ii. 1.9 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0.
 - iii. 1.99 Norm Different vs. Time, Different Parameters = 0.01Norm Different between Initial Conditions = 0
 - iv. 2.01 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
- e. Expo and step
 - i. Expo
 - 1.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - 2. Repeat for α values
 - a. 0.9 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - b. 0.98 Norm Different vs. Time, Different Parameters = 0.02
 Norm Different between Initial Conditions = 0
 - c. 1.01 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
 - 3. Seems to be dependent on initial conditions
 - 4. Repeat for β values
 - a. 2.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - d. 1.9 Norm Different vs. Time, Different Parameters = 0.1
 Norm Different between Initial Conditions = 0
 - e. 1.99 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
 - f. 2.01 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
 - 5. Seems to be dependent on initial conditions
 - ii. Step
 - 1. 1.1 Norm Different vs. Time, Different Parameters = 0.1

Norm Different between Initial Conditions = 0

- 2. Repeat for α values
 - a. 0.9 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - b. 0.98 Norm Different vs. Time, Different Parameters = 0.02
 Norm Different between Initial Conditions = 0
 - c. 1.01 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
- 3. Seems to be dependent on initial conditions
- 4. Repeat for β values
 - a. 2.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - b. 1.9 Norm Different vs. Time, Different Parameters = 0.1
 Norm Different between Initial Conditions = 0
 - c. 1.99 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
 - d. 2.01 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
- 5. Seems to be dependent on initial conditions
- f. Still seems to depend on the initial conditions
- iii) Cos
 - a. Yes difference is small
 - b. Repeat for values of $\boldsymbol{\alpha}$
 - i. $\alpha = .9$ the difference seems small
 - ii. α = .98 the difference seems small
 - iii. α = 1.01 the difference seems small
 - c. changing α does not seem to change the dependence on the initial conditions
 - d. Repeat for values of β
 - i. β = 2.1 the difference seems small
 - ii. $\beta = 1.9$ the difference seems small
 - iii. $\beta = 1.99$ the difference seems small
 - iv. $\beta = 2.01$ the difference seems small
 - e. Still seems to depend on initial conditions
 - f. Still seems to depend on initial conditions with different perturbation sizes.
- iv) In 9.3, there was a dependence on 2 variables, the initial conditions and k^2. While here, the dependence seems to be on initial conditions, initial conditions, α , and β .
- v) Expo and step
 - a. Expo
 - i. 0.01 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0.0011129
 - ii. 0.001 Norm Different vs. Time, Different Parameters = 0.001 Norm Different between Initial Conditions = 0.0011129

- iii. There seems to be a sensitivity to α being very small
- b. Step
 - i. There seems to be no difference
 - ii. There seems to be no difference
 - iii. There seems to be a sensitivity to α being very small

MatLab – Exercise 9.2.4

- i. BC Dirichlet, converges slower than the Heat Equation
 - a. Similar convergence to Heat Equation with $\alpha = 0$
 - b. The smaller α , the faster convergence is
 - c. Little or no convergence with $\beta = 0$
 - d. The smaller β , the slower convergence
 - e. Expo convergens is slower than the Heat Equation
 - 1. Similar convergence to Heat Equation with $\alpha = 0$
 - 2. The smaller α , the faster convergence is
 - 3. Little or no convergence with $\beta = 0$
 - 4. The smaller β , the slower convergence
- ii. BC Nuemann, converges slower than the Heat Equation
 - a. Similar convergence to Heat Equation with $\alpha = 0$
 - b. The smaller α , the faster convergence is, same as (i)(b)
 - c. Little or no convergence with $\beta = 0$, same as (i)(c)
 - d. The smaller β , the slower convergence, same as (i)(d)
 - e. Expo convergence is slower than the Heat Equation
 - 1. Similar convergence to Heat Equation with $\alpha = 0$
 - 2. The smaller α , the faster convergence is, same as (i)(b)
 - 3. Little or no convergence with $\beta = 0$, same as (i)(c)
 - 4. The smaller β , the slower convergence, same as (i)(d)
- iii. BC Periodic, converges slower than the Heat Equation
 - a. Similar convergence to Heat Equation with $\alpha = 0$
 - b. The smaller α , the faster convergence is
 - c. Little or no convergence with $\beta = 0$
 - d. The smaller β , the slower convergence
 - e. Expo convergens is slower than the Heat Equation
 - 1. Similar convergence to Heat Equation with $\alpha = 0$
 - 2. The smaller α , the faster convergence is
 - 3. Little or no convergence with $\beta = 0$
 - 4. The smaller β , the slower convergence
- iv. The evolution model seems to be similar to Explore 9.9
- v. Step, no changes converges slower than the Heat Equation
 - a. Similar convergence to Heat Equation with $\alpha = 0$

- b. The smaller α , the faster convergence is
- c. Little or no convergence with $\beta = 0$
- d. The smaller β , the slower convergence

MatLab – Exercise 9.2.5

- i. BC Dirichlet, fluid disperses moderately
 - a. When α = 0, convergence is the same as the Heat Equation
 - b. Seems a little slower
 - c. Converges faster than (b), and is similar to the Heat Equation
 - d. Expo, fluid disperses moderately
 - 1. When $\alpha = 0$, convergence is the same as the Heat Equation
 - 2. Seems a little slower
 - 3. Converges faster than (2), and is similar to the Heat Equation
- ii. BC Nuemann, fluid disperses moderately
 - a. When α = 0, convergence is the same as the Heat Equation
 - b. Seems a little slower
 - c. Converges faster than (b), and is similar to the Heat Equation
 - e. Expo, fluid disperses moderately
 - 1. When $\alpha = 0$, convergence is the same as the Heat Equation
 - 2. Seems a little slower
 - 3. Converges faster than (2), and is similar to the Heat Equation
- ii. BC Periodic, fluid disperses moderately
 - a. When $\alpha = 0$, convergence is the same as the Heat Equation
 - b. Seems a little slower
 - c. Converges faster than (b), and is similar to the Heat Equation
 - d. Expo, fluid disperses moderately
 - 1. When α = 0, convergence is the same as the Heat Equation
 - 2. Seems a little slower
 - 3. Converges faster than (2), and is similar to the Heat Equation
- iii. B seems to be the dominant variable, over $\boldsymbol{\alpha}$
- iv. Step, fluid disperses moderately
 - e. When α = 0, convergence is the same as the Heat Equation
 - f. Seems a little slower
 - g. Converges faster than (b), and is similar to the Heat Equation

MatLab – Exercise 9.2.6

vi) Sine

- a. 0.5 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.5
- b. Repeat
 - viii. 0.25 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.25
 - ix. 0.1 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.1
 - x. 0.01 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.01
 - xi. 0.005 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.005
- c. Seems to be dependent on initial conditions
- d. Expo, step
 - i. Expo
 - 0.5 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.099083
 - 2. Repeat
 - a. 0.25 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.049542
 - b. 0.1 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.019817
 - c. 0.01 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.0019817
 - d. 0.005 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.00099083
 - 3. Seems to be dependent on initial conditions
 - ii. Step
 - 0.5 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.5
 - 2. Repeat
 - e. 0.25 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.25
 - f. 0.1 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.1
 - g. 0.01 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.01
 - h. 0.005 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.005
 - 3. Seems to be dependent on initial conditions
- e. The fluid seepage equation seems to correspond with the heat equation

vii) Cos

a. 1.1 - Norm Different vs. Time, Different Parameters = 0.1

Norm Different between Initial Conditions = 0

- b. Repeat with α values
 - xii. 0.9 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - xiii. 0.98 Norm Different vs. Time, Different Parameters = 0.02 Norm Different between Initial Conditions = 0.
 - xiv. 1.01 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
- c. Seems to be dependent on initial conditions
- d. Repeat with β values
 - i. 2.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - ii. 1.9 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0.
 - iii. 1.99 Norm Different vs. Time, Different Parameters = 0.01Norm Different between Initial Conditions = 0
 - iv. 2.01 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
- e. Expo and step
 - i. Expo
 - 1.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - 2. Repeat for α values
 - a. 0.9 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - b. 0.98 Norm Different vs. Time, Different Parameters = 0.02
 Norm Different between Initial Conditions = 0
 - c. 1.01 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
 - 3. Seems to be dependent on initial conditions
 - 4. Repeat for β values
 - a. 2.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - d. 1.9 Norm Different vs. Time, Different Parameters = 0.1
 Norm Different between Initial Conditions = 0
 - e. 1.99 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
 - f. 2.01 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
 - 5. Seems to be dependent on initial conditions
 - ii. Step
 - 1. 1.1 Norm Different vs. Time, Different Parameters = 0.1

Norm Different between Initial Conditions = 0

- 2. Repeat for α values
 - a. 0.9 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - b. 0.98 Norm Different vs. Time, Different Parameters = 0.02
 Norm Different between Initial Conditions = 0
 - c. 1.01 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
- 3. Seems to be dependent on initial conditions
- 4. Repeat for β values
 - a. 2.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - b. 1.9 Norm Different vs. Time, Different Parameters = 0.1
 Norm Different between Initial Conditions = 0
 - c. 1.99 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
 - d. 2.01 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
- 5. Seems to be dependent on initial conditions
- f. Still seems to depend on the initial conditions

viii) Cos

- a. Yes difference is small
- b. Repeat for values of $\boldsymbol{\alpha}$
 - i. $\alpha = .9$ the difference seems small
 - ii. α = .98 the difference seems small
 - iii. $\alpha = 1.01$ the difference seems small
- c. changing α does not seem to change the dependence on the initial conditions
- d. Repeat for values of β
 - i. β = 2.1 the difference seems small
 - ii. $\beta = 1.9$ the difference seems small
 - iii. $\beta = 1.99$ the difference seems small
 - iv. $\beta = 2.01$ the difference seems small
- e. Still seems to depend on initial conditions
- f. Still seems to depend on initial conditions with different perturbation sizes.
- ix) In 9.3, there was a dependence on 2 variables, the initial conditions and k^2. While here, the dependence seems to be on initial conditions, initial conditions, α , and β .
- x) Expo and step
 - a. Expo
 - i. 0.01 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0.0011129
 - ii. 0.001 Norm Different vs. Time, Different Parameters = 0.001 Norm Different between Initial Conditions = 0.0011129

iii. There seems to be a sensitivity to α being very small

b. Step

- i. There seems to be no difference
- ii. There seems to be no difference
- iii. There seems to be a sensitivity to $\boldsymbol{\alpha}$ being very small

MatLab – Exercise 9.2.7

- i. Nuemann, cos. Convergence seems similar to the fluid seepage equation, may be a little slower.
 - a. Glitch
 - b. The smaller α , the less the equation converges
 - c. Little or no convergence
 - d. The smaller β , the slower convergence
 - e. Expo, convergence seems similar to the fluid seepage equation, may be a little slower
 - i. Glitch
 - ii. The smaller α , the less the equation converges
 - iii. Little or no convergence
 - iv. The smaller β , the slower convergence
- ii. Periodic, cos. Convergence seems similar to the fluid seepage equation, may be a little slower.
 - a. Glitch
 - b. The smaller α , the less the equation converges
 - c. Little or no convergence
 - d. The smaller β , the slower convergence
 - e. Expo, convergence seems similar to the fluid seepage equation, may be a little slower
 - i. Glitch
 - ii. The smaller $\boldsymbol{\alpha}$, the less the equation converges
 - iii. Little or no convergence
 - iv. The smaller β , the slower convergence
- iii. B seems to be the dominant variable, and it seems to be similar to the fluid seepage equation.
- iv. Step, convergence seems similar to the fluid seepage equation, may be a little slower.
 - a. Glitch
 - b. The smaller α , the less the equation converges
 - c. Little or no convergence
 - d. The smaller β , the slower convergence

MatLab – Exercise 9.2.8

- 1. Nuemann, cos, relatively slow convergence, slower than fluid seepage equation
 - a. Glitch
 - b. Little or no convergence
 - c. Expo, relatively slow convergence, slower than fluid seepage equation
 - i. Glitch
 - ii. Little or no convergence
- 2. Periodic, cos, relatively slow convergence, slower than fluid seepage equation
 - a. Glitch
 - b. Little or no convergence
 - c. Expo, relatively slow convergence, slower than fluid seepage equation
 - i. Glitch
 - ii. Little or no convergence
- 3. The smaller α , the faster convergence, and the smaller β , the slower convergence. With β being the dominant variable. Similar to Explore! 9.9.
- 4. Periodic, step, relatively slow convergence, slower than fluid seepage equation
 - a. Glitch
 - b. Little or no convergence
 - c. No changes need to be made to (3)

<mark>MatLab – Exercise 9.2.9</mark>

- xi) Neumann, cos
 - a. 0.5 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.5
 - b. Repeat
 - xv. 0.25 Norm Different vs. Time, Different Parameters = 0Norm Different between Initial Conditions = 0.25

- xvi. 0.1 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.1
- xvii. 0.01 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.01
- xviii. 0.005 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.005
- c. Seems to be dependent on initial conditions
- d. Expo, step
 - i. Expo
 - 0.5 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.099083
 - 2. Repeat
 - a. 0.25 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.049542
 - b. 0.1 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.019817
 - c. 0.01 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.0019817
 - d. 0.005 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.00099083
 - 3. Seems to be dependent on initial conditions
 - ii. Step
 - 0.5 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.5
 - 2. Repeat
 - e. 0.25 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.25
 - f. 0.1 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.1
 - g. 0.01 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.01
 - h. 0.005 Norm Different vs. Time, Different Parameters = 0
 - Norm Different between Initial Conditions = 0.005
 - 3. Seems to be dependent on initial conditions
- e. The fluid seepage equation seems to correspond with the heat equation
- xii) Cos
 - a. 1.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - b. Repeat with α values
 - xix. 0.9 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - xx. 0.98 Norm Different vs. Time, Different Parameters = 0.02

Norm Different between Initial Conditions = 0.

- xxi. 1.01 Norm Different vs. Time, Different Parameters = 0.01
 - Norm Different between Initial Conditions = 0
- c. Seems to be dependent on initial conditions
- d. Repeat with β values
 - i. 2.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - ii. 1.9 Norm Different vs. Time, Different Parameters = 0.1Norm Different between Initial Conditions = 0.
 - iii. 1.99 Norm Different vs. Time, Different Parameters = 0.01Norm Different between Initial Conditions = 0
 - iv. 2.01 Norm Different vs. Time, Different Parameters = 0.01Norm Different between Initial Conditions = 0
- e. Expo and step
 - i. Expo
 - 1.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - 2. Repeat for α values
 - a. 0.9 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - b. 0.98 Norm Different vs. Time, Different Parameters = 0.02
 Norm Different between Initial Conditions = 0
 - c. 1.01 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
 - 3. Seems to be dependent on initial conditions
 - 4. Repeat for β values
 - a. 2.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - d. 1.9 Norm Different vs. Time, Different Parameters = 0.1
 Norm Different between Initial Conditions = 0
 - e. 1.99 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
 - f. 2.01 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
 - 5. Seems to be dependent on initial conditions
 - ii. Step
 - 1. 1.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - 2. Repeat for α values
 - a. 0.9 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - b. 0.98 Norm Different vs. Time, Different Parameters = 0.02

Norm Different between Initial Conditions = 0

- c. 1.01 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
- 3. Seems to be dependent on initial conditions
- 4. Repeat for β values
 - a. 2.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - b. 1.9 Norm Different vs. Time, Different Parameters = 0.1
 Norm Different between Initial Conditions = 0
 - c. 1.99 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
 - d. 2.01 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
- 5. Seems to be dependent on initial conditions
- f. Still seems to depend on the initial conditions

xiii) Cos

- a. Yes difference is small
- b. Repeat for values of $\boldsymbol{\alpha}$
 - i. α = .9 the difference seems small
 - ii. α = .98 the difference seems small
 - iii. α = 1.01 the difference seems small
- c. changing α does not seem to change the dependence on the initial conditions
- d. Repeat for values of β
 - i. $\beta = 2.1$ the difference seems small
 - ii. $\beta = 1.9$ the difference seems small
 - iii. $\beta = 1.99$ the difference seems small
 - iv. $\beta = 2.01$ the difference seems small
- e. Still seems to depend on initial conditions
- f. Still seems to depend on initial conditions with different perturbation sizes.

MatLab – Exercise 9.2.10

- i. Nuemann, cos, convergence is similar to the 2D fluid seepage equation, maybe a little slower
 - a. Glitch
 - b. The smaller α is, the faster convergence seems to be
 - c. Little or no convergence
 - d. The smaller β is, the slower convergence
 - e. Expo
 - i. Glitch
 - ii. The smaller α is, the faster convergence seems to be

- iii. Little or no convergence
- iv. The smaller $\boldsymbol{\beta}$ is, the slower convergence
- ii. Periodic, cos, cos, convergence is similar to the 2D fluid seepage equation, maybe a little slower
 - a. Glitch
 - b. The smaller α is, the faster convergence seems to be
 - c. Little or no convergence
 - d. The smaller $\boldsymbol{\beta}$ is, the slower convergence
 - e. Expo
 - i. Glitch
 - ii. The smaller $\boldsymbol{\alpha}$ is, the faster convergence seems to be
 - iii. Little or no convergence
 - iv. The smaller β is, the slower convergence
- iii. B is the dominant variable, similar to Explore! 9.9
- iv. Step, convergence is similar to the 2D fluid seepage equation, maybe a little slower
 - a. Glitch
 - b. The smaller α is, the faster convergence seems to be
 - c. Little or no convergence
 - d. The smaller $\boldsymbol{\beta}$ is, the slower convergence
 - e. No changes to (iii) are needed

MatLab – Exercise 9.2.11

- i. No sine initial condition option
 - a. No sine initial condition option
 - b. No sine initial condition option
 - c. Expo, convergence is similar to the heat equation, but much slower
 - i. Glitch
 - ii. Little or no convergence
- ii. Periodic, cos convergence is similar to the heat equation, but slower
 - a. Glitch
 - b. Little or no convergence
 - c. Expo, convergence is similar to the heat equation, but much slower
 - i. Glitch
 - ii. Little or no convergence
- iii. Summary is the same as Explore! 9.15
- iv. Step, convergence is similar to the heat equation, but much slower
 - a. Glitch

- b. Little or no convergence
- c. No difference in observations

MatLab – Exercise 9.2.12

xiv) Cos

- a. 0.5 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 1.4142
- b. Repeat
 - xxii. 0.25 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.70711
 - xxiii. 0.1 Norm Different vs. Time, Different Parameters = 0
 - Norm Different between Initial Conditions = 0.28284
 - xxiv. 0.01 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.028284
 - xxv. 0.005 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.014142
- c. Seems to be dependent on initial conditions
- d. Expo, step
 - i. Expo

 0.5 - Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.099083

- 2. Repeat
 - a. 0.25 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.049542
 - b. 0.1 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.019817
 - c. 0.01 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.0019817
 - d. 0.005 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.00099083
- 3. Seems to be dependent on initial conditions
- ii. Step
 - 0.5 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 31
 - 2. Repeat

- e. 0.25 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 15.5
- f. 0.1 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 6.2
- g. 0.01 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.62
- h. 0.005 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.31
- 3. Seems to be dependent on initial conditions
- e. The fluid seepage equation seems to correspond with the heat equation

xv) Cos

- a. 1.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
- b. Repeat with α values
 - xxvi. 0.9 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - xxvii. 0.98 Norm Different vs. Time, Different Parameters = 0.02 Norm Different between Initial Conditions = 0.
 - xxviii. 1.01 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
- c. Seems to be dependent on initial conditions
- d. Repeat with β values
 - i. 2.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - ii. 1.9 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0.
 - iii. 1.99 Norm Different vs. Time, Different Parameters = 0.01Norm Different between Initial Conditions = 0
 - iv. 2.01 Norm Different vs. Time, Different Parameters = 0.01
 - Norm Different between Initial Conditions = 0
- e. Expo and step
 - і. Ехро
 - 1.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - 2. Repeat for α values
 - a. 0.9 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - b. 0.98 Norm Different vs. Time, Different Parameters = 0.02
 Norm Different between Initial Conditions = 0
 - c. 1.01 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
 - 3. Seems to be dependent on initial conditions

- 4. Repeat for β values
 - a. 2.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - d. 1.9 Norm Different vs. Time, Different Parameters = 0.1
 Norm Different between Initial Conditions = 0
 - e. 1.99 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
 - f. 2.01 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
- 5. Seems to be dependent on initial conditions
- ii. Step
 - 1.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - 2. Repeat for α values
 - a. 0.9 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - b. 0.98 Norm Different vs. Time, Different Parameters = 0.02
 Norm Different between Initial Conditions = 0
 - c. 1.01 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
 - 3. Seems to be dependent on initial conditions
 - 4. Repeat for β values
 - a. 2.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - b. 1.9 Norm Different vs. Time, Different Parameters = 0.1
 Norm Different between Initial Conditions = 0
 - c. 1.99 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
 - d. 2.01 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
 - 5. Seems to be dependent on initial conditions
- f. Still seems to depend on the initial conditions

xvi) Cos

- a. Yes difference is small
- b. Repeat for values of α
 - i. α = .9 the difference seems small
 - ii. α = .98 the difference seems small
 - iii. $\alpha = 1.01$ the difference seems small
- c. changing α does not seem to change the dependence on the initial conditions
- d. Repeat for values of $\boldsymbol{\beta}$
 - i. $\beta = 2.1$ the difference seems small
 - ii. $\beta = 1.9$ the difference seems small

- iii. β = 1.99 the difference seems small
- iv. $\beta = 2.01$ the difference seems small
- e. Still seems to depend on initial conditions
- f. Still seems to depend on initial conditions with different perturbation sizes.
- xvii) Can't do this exercise

MatLab – Exercise 9.3.1

- i) Dirichlet sine, runs
 - a. Runs
 - b. Motion is slower
 - c. Runs
 - d. The smaller c^2, the slower the motion
 - e. The larger c^2, the faster motion is
- ii) Runs
 - a. Runs
 - b. Motion is slower
 - c. Runs
 - d. The smaller c^2, the slower the motion
 - e. The larger c^2, the faster motion is
- iii) Runs
 - a. Runs
 - b. Motion is slower
 - c. Runs
 - d. The smaller c^2, the slower the motion
 - e. The larger c^2, the faster motion is
- iv) The Heat equation would converge to zero relatively quickly, but the wave equation does not

MatLab – Exercise 9.3.2

- i. There's a series of ripples
 - a. Less time between waves
 - b. There's a series of peaks and troughs
 - i. Not much change
- ii. Repeat
 - a. Cos, no pattern
 - i. Smaller waves, still no pattern
 - b. Step, argil pattern
 - i. Denser pattern
- iii. C^2 = 3
 - a. Cos
 - i. no pattern
 - ii. No difference
 - b. Sine
 - i. Series of ripples
 - ii. Less time between waves
 - c. Expo
 - i. X patterns of peaks and troughs
 - ii. No difference
 - d. Step
 - i. Argil pattern
 - ii. Denser pattern
- iv. The heat equation dissipates and stops. While the wave equation continues on much longer
- v. Dirichlet is more fluid, while the other 2 are more ridged

Matlab – Exercise 9.3.3

- i. Sin, 0
 - a. 0.5 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.5
 - b. Repeat

xxix. 0.25 - Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.25

- xxx. 0.1 Norm Different vs. Time, Different Parameters = 0
 - Norm Different between Initial Conditions = 0.1
- xxxi. 0.01 Norm Different vs. Time, Different Parameters = 0
 - Norm Different between Initial Conditions = 0.01
- xxxii. 0.005 Norm Different vs. Time, Different Parameters = 0
 - Norm Different between Initial Conditions = 0.005
- xxxiii. Wave equation seems to depend on initial conditions
- c. Non-zero, and expo
 - i. Sine, 1

1. 0.5 - Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.5

- 2. Repeat
 - a. 0.25 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.25
 - b. 0.1 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.1
 - c. 0.01 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.01
 - d. 0.005 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.005
- ii. Expo, 0
 - 0.5 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.22258
 - 2. Repeat
 - e. 0.25 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.11129
 - f. 0.1 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.044516
 - g. 0.01 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.0044516
 - h. 0.005 Norm Different vs. Time, Different Parameters = 0
 - Norm Different between Initial Conditions = 0.022258
- iii. Expo, 1
 - 0.5 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.2258
 - 2. Repeat
 - i. 0.25 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.11129
 - j. 0.1 Norm Different vs. Time, Different Parameters = 0Norm Different between Initial Conditions = 0.044516
 - k. 0.01 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.0044516

- I. 0.005 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.0022258
- a. No change to conjecture
- d. Perturbing c², d and e
 - i. Cos, 0
 - 3.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - 2. Repeat
 - m. 2.9 Norm Different vs. Time, Different Parameters = 0.1
 Norm Different between Initial Conditions = 0
 - n. 2.95 Norm Different vs. Time, Different Parameters = 0.05 Norm Different between Initial Conditions = 0
 - o. 2.99 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
 - p. 3.1 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
- e. Repeat d with non-zero and expo, this is f
 - i. Cos,1

 3.1 - Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0

- 2. Repeat
 - q. 2.9 Norm Different vs. Time, Different Parameters = 0.1
 Norm Different between Initial Conditions = 0
 - r. 2.95 Norm Different vs. Time, Different Parameters = 0.05
 Norm Different between Initial Conditions = 0
 - s. 2.99 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
 - t. 3.1 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
- ii. Expo, O
 - 3.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - 2. Repeat
 - u. 2.9 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - v. 2.95 Norm Different vs. Time, Different Parameters = 0.05 Norm Different between Initial Conditions = 0
 - w. 2.99 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
 - x. 3.1 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
- iii. Expo, 1

- 3.1 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
- 2. Repeat
 - y. 2.9 Norm Different vs. Time, Different Parameters = 0.1
 Norm Different between Initial Conditions = 0
 - 2.95 Norm Different vs. Time, Different Parameters = 0.05
 Norm Different between Initial Conditions = 0
 - aa. 2.99 Norm Different vs. Time, Different Parameters = 0.01Norm Different between Initial Conditions = 0
 - bb. 3.1 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
- f. This is really g and h
 - i. Cos, 0
 - 1. 3.1 Norm Difference vs. Time Difference in Parameters = 0.1
 - 0.5 Norm Difference between Initial Conditions = 0.70711
 - 2. Repeat
 - a. 2.95 Norm Difference vs. Time Difference in Parameters = 0.05 0.1 - Norm Difference between Initial Conditions = 0.14142
 - b. 2.99 Norm Difference vs. Time Difference in Parameters = 0.01
 0.051 Norm Difference between Initial Conditions = 0.070711
 - c. 3.01 Norm Difference vs. Time Difference in Parameters = 0.01 0.01 - Norm Difference between Initial Conditions = 0.014142
 - ii. Cos, 1
 - 1. 3.1 Norm Difference vs. Time Difference in Parameters = 0.1
 - 0.5 Norm Difference between Initial Conditions = 0.70711
 - 2. Repeat
 - a. 2.95 Norm Difference vs. Time Difference in Parameters = 0.05 0.1 - Norm Difference between Initial Conditions = 0.14142
 - b. 2.99 Norm Difference vs. Time Difference in Parameters = 0.01
 0.051 Norm Difference between Initial Conditions = 0.070711
 - c. 3.01 Norm Difference vs. Time Difference in Parameters = 0.01 0.01 - Norm Difference between Initial Conditions = 0.014142
 - iii. Expo, 0
 - 1. 3.1 Norm Difference vs. Time Difference in Parameters = 0.1
 - 0.5 Norm Difference between Initial Conditions = 0.22258
 - 2. Repeat
 - a. 2.95 Norm Difference vs. Time Difference in Parameters = 0.05 0.1 - Norm Difference between Initial Conditions = 0.022258
 - b. 2.99 Norm Difference vs. Time Difference in Parameters = 0.01
 - 0.01 Norm Difference between Initial Conditions = 0.0044516
 - c. 3.01 Norm Difference vs. Time Difference in Parameters = 0.01 0.01 - Norm Difference between Initial Conditions = 0.0044516
 - iv. Expo, 1
 - 1. 3.1 Norm Difference vs. Time Difference in Parameters = 0.1
 - 0.5 Norm Difference between Initial Conditions = 0.22258

- 2. Repeat
 - a. 2.95 Norm Difference vs. Time Difference in Parameters = 0.05 0.1 - Norm Difference between Initial Conditions = 0.022258
 - b. 2.99 Norm Difference vs. Time Difference in Parameters = 0.01 0.051 - Norm Difference between Initial Conditions = 0.0044516
 - c. 3.01 Norm Difference vs. Time Difference in Parameters = 0.01
 - 0.01 Norm Difference between Initial Conditions = 0.004451

- ii. Skip
- iii. Skip
- iv. Repeat (i) with H¹, perturbation size
 - a. Sin, O
 - v. 0.5 Norm Different vs. Time, Different Parameters = 0
 - Norm Different between Initial Conditions = 1.6485
 - vi. Repeat
 - 0.25 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.824223
 - 0.1 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.32969
 - 3. 0.01 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.032969
 - 4. 0.005 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.016485
 - b. Sin, 1
 - vii. 0.5 Norm Different vs. Time, Different Parameters = 0
 - Norm Different between Initial Conditions = 1.6485
 - viii. Repeat
 - 0.25 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.824223
 - 0.1 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.32969
 - 0.01 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.032969
 - 0.005 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.016485
 - c. Expo, 0
 - ix. 0.5 Norm Different vs. Time, Different Parameters = 0
 - Norm Different between Initial Conditions = 1.4252
 - x. Repeat
 - 0.25 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.7126
 - 0.1 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.28504

- 0.01 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.028504
- 0.005 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.014252
- d. Expo, 1
 - xi. 0.5 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 1.4252
 - xii. Repeat
 - 0.25 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.7126
 - 0.1 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.28504
 - 0.01 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.028504
 - 0.005 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.014252
- e. C^2 changes

i. Cos, 0

 0.5 - Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0

- 2. Repeat
 - a. 0.25 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - b. 0.1 Norm Different vs. Time, Different Parameters = 0.05 Norm Different between Initial Conditions = 0
 - c. 0.01 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
 - d. 0.005 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
- ii. Cos, 1
 - 0.5 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - 4. Repeat
 - a. 0.25 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - b. 0.1 Norm Different vs. Time, Different Parameters = 0.05
 Norm Different between Initial Conditions = 0
 - c. 0.01 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
 - d. 0.005 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
- iii. Expo, 0

- 0.5 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
- 6. Repeat
 - a. 0.25 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - b. 0.1 Norm Different vs. Time, Different Parameters = 0.05
 Norm Different between Initial Conditions = 0
 - c. 0.01 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
 - d. 0.005 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
- iv. Expo, 1
 - 0.5 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - 8. Repeat
 - a. 0.25 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0
 - b. 0.1 Norm Different vs. Time, Different Parameters = 0.05
 Norm Different between Initial Conditions = 0
 - c. 0.01 Norm Different vs. Time, Different Parameters = 0.01 Norm Different between Initial Conditions = 0
 - d. 0.005 Norm Different vs. Time, Different Parameters = 0.01
 Norm Different between Initial Conditions = 0
- f. This is g and h
 - i. Cos, 0
 - 1. 3.1 Norm Difference vs. Time Difference in Parameters = 0.1
 - 0.5 Norm Difference between Initial Conditions = 6.5155
 - 2. Repeat
 - a. 2.95 Norm Difference vs. Time Difference in Parameters = 0.05 0.1 - Norm Difference between Initial Conditions = 1.3031
 - b. 2.99 Norm Difference vs. Time Difference in Parameters = 0.01
 0.01 Norm Difference between Initial Conditions = 0.65155
 - c. 3.01 Norm Difference vs. Time Difference in Parameters = 0.01
 - 0.01 Norm Difference between Initial Conditions = 0.13031
 - ii. Cos, 1
 - 1. 3.1 Norm Difference vs. Time Difference in Parameters = 0.1
 - 0.5 Norm Difference between Initial Conditions = 6.5155
 - 2. Repeat
 - a. 2.95 Norm Difference vs. Time Difference in Parameters = 0.05 0.1 - Norm Difference between Initial Conditions = 1.3031
 - b. 2.99 Norm Difference vs. Time Difference in Parameters = 0.01
 0.01 Norm Difference between Initial Conditions = 0.65155
 - c. 3.01 Norm Difference vs. Time Difference in Parameters = 0.01
 0.01 Norm Difference between Initial Conditions = 0.13031

- iii. Expo, 0
 - 1. 3.1 Norm Difference vs. Time Difference in Parameters = 0.1
 - 0.5 Norm Difference between Initial Conditions = 1.4252
 - 2. Repeat
 - a. 2.95 Norm Difference vs. Time Difference in Parameters = 0.05 0.1 - Norm Difference between Initial Conditions =0.28504
 - b. 2.99 Norm Difference vs. Time Difference in Parameters = 0.01
 0.01 Norm Difference between Initial Conditions = 0.14252
 - c. 3.01 Norm Difference vs. Time Difference in Parameters = 0.01 0.01 - Norm Difference between Initial Conditions = 0.028504
- iv. Expo, 1
 - 1. 3.1 Norm Difference vs. Time Difference in Parameters = 0.1
 - 0.5 Norm Difference between Initial Conditions = 1.4252
 - 2. Repeat
 - a. 2.95 Norm Difference vs. Time Difference in Parameters = 0.05 0.1 - Norm Difference between Initial Conditions =0.28504
 - b. 2.99 Norm Difference vs. Time Difference in Parameters = 0.01
 0.01 Norm Difference between Initial Conditions = 0.14252
 - c. 3.01 Norm Difference vs. Time Difference in Parameters = 0.01 0.01 - Norm Difference between Initial Conditions = 0.028504

v. skip

MatLab – Exercise 9.3.4

- i. Runs
 - a. Runs
 - b. They seem relatively similar
 - c. They seem relatively similar
 - d. A larger α yields less fluctuation
 - e. The larger α , the larger the wave fluctuation

ii. Runs

- a. Runs
- b. They seem relatively similar
- c. They seem relatively similar
- d. A larger α yields less fluctuation
- e. The larger α , the larger the wave fluctuation
- iii. Runs

- a. Runs
- b. They seem relatively similar
- c. They seem relatively similar
- d. A larger α yields less fluctuation
- e. The larger α , the larger the wave fluctuation

MatLab – Exercise 9.3.5

- i. They get smaller as time goes by
 - a. Slower decline in wave fluctuation
 - b. Slower decline in wave fluctuation
- ii. Damped slows rapidly
 - a. Damped slows rapidly
 - b. Damped slows rapidly
- iii. Damped slows rapidly
 - a. Damped slows rapidly
 - b. Damped slows rapidly
- iv. The smaller α , the smaller the dampening effects are
- v. The conjecture from (iv) holds
- vi. The lower c^2 , the greater the difference between damped and undamped.

ii. Sin, 0

- g. 0.5 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.5
- h. Repeat
 - i. 0.25 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 0.25
 - ii. 0.1 Norm Different vs. Time, Different Parameters = 0Norm Different between Initial Conditions = 0.1
 - iii. 0.01 Norm Different vs. Time, Different Parameters = 0Norm Different between Initial Conditions = 0.01
 - iv. 0.005 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.005
 - v. Seems
- i. Conjecture holds for non-zero initial velocity
- iii. Cos, 0
 - j. P.p.c 3.1 Norm Different vs. Time, Different Parameters = 0.14142 p.d.c. - 4.9 - Norm Different between Initial Conditions = 0
 - k. Repeat
 - P.p.c 2.9 Norm Different vs. Time, Different Parameters = 0.14142
 p.d.c. 5.1 Norm Different between Initial Conditions = 0
 - P.p.c 2.95 Norm Different vs. Time, Different Parameters = 0.070711
 p.d.c. 4.95 Norm Different between Initial Conditions = 0
 - P.p.c 2.99 Norm Different vs. Time, Different Parameters = 0.05099
 p.d.c. 5.05 Norm Different between Initial Conditions = 0
 - iv. P.p.c 3.01 Norm Different vs. Time, Different Parameters = 0.014142
 - p.d.c. 4.99 Norm Different between Initial Conditions = 0
 - v. Purterbing α and c^2 , seems to change the model a bit
 - I. Conjecture holds for non-zero initial velocity
- iv. 9.2.3 had no dampening effects, it was fluid

MatLab – Exercise 9.3.7

- vi. Runs
 - a. Runs
 - b. Slower, same as EXPLORE! 9.21
 - c. Slower, same as EXPLORE! 9.21
 - d. The c² the less damping affects there are with non-zero initial velocity, the waves seem to mesh together and then reform
 - e. A larger c² seems to accelerate the wave

vii. Runs

- a. Runs
- b. Slower, same as EXPLORE! 9.21
- c. Slower, same as EXPLORE! 9.21
- d. The c² the less damping affects there are with non-zero initial velocity, the waves seem to mesh together and then reform

viii. Runs

- a. Runs
- b. Slower, same as EXPLORE! 9.21
- c. Slower, same as EXPLORE! 9.21
- d. The c² the less damping affects there are with non-zero initial velocity, the waves seem to mesh together and then reform

e.

MatLab – Exercise 9.3.8

- i. 2 rows of waves
 - a. No change, 2 rows of waves
 - b. A spike that turns into a star pattern
 - i. No change, a spike that turns into a star pattern

ii. Repeat

- a. Cos, one row of waves that breaks down with no change
- iii. repeat
 - a. 2 rows of waves

- i. No change, 2 rows of waves
- ii. A spike that turns into a star pattern
 - 1. No change, a spike that turns into a star pattern
- b. Repeat
 - i. Cos, one row of waves that breaks down with no change as initial velocity exponential
- iv. 1D patterns did not present themselves in 2D equation
- v. Step pillar that turns into a star pattern with no change as initial velocity exponential

MatLab – Exercise 9.3.9

- vi. $C^2 = 3$, ant t = 0.5 (sin, 0), H₁
 - a. 0.25 Norm Different vs. Time, Different Parameters = 0 Norm Different between Initial Conditions = 1.7739
 - b. Repeat
 - i. 0.1 Norm Different vs. Time, Different Parameters = 0
 Norm Different between Initial Conditions = 0.70956
 - ii. 0.01 Norm Different vs. Time, Different Parameters = 0Norm Different between Initial Conditions = 0.070956
 - iii. 0.005 Norm Different vs. Time, Different Parameters = 0
 - Norm Different between Initial Conditions = 0.035478
 - iv. Seems to depend on initial conditions
 - c. No change in conjecture
- vii. (Cos, 0), with perturbation size = 0
 - a. 2.1 Norm Different vs. Time, Different Parameters = 0.1
 Norm Different between Initial Conditions = 0
 The perturbed solution is less wavy
 - b. Repeat
 - i. 1.9 Norm Different vs. Time, Different Parameters = 0.1
 Norm Different between Initial Conditions = 0
 The perturbed solution is less wavy

- ii. 1.95 Norm Different vs. Time, Different Parameters = 0.05
 Norm Different between Initial Conditions = 0
 The perturbed solution is less wavy
- iii. 2.005 Norm Different vs. Time, Different Parameters = 0.005
 Norm Different between Initial Conditions = 0
 The perturbed solution is less wavy
- c. No change in conjecture

viii. (Cos, 0) periodic boundary conditions with perturbation size = 0

- a. 2.1 Norm Different vs. Time, Different Parameters = 0.1
 Norm Different between Initial Conditions = 0
 The perturbed solution is less wavy
- b. Repeat
 - i. 1.9 Norm Different vs. Time, Different Parameters = 0.1 Norm Different between Initial Conditions = 0 The perturbed solution is less wavy
 - ii. 1.95 Norm Different vs. Time, Different Parameters = 0.05
 Norm Different between Initial Conditions = 0
 The perturbed solution is less wavy
 - iii. 2.005 Norm Different vs. Time, Different Parameters = 0.005
 Norm Different between Initial Conditions = 0
 The perturbed solution is less wavy
- c. No change in conjecture
- ix. 2D seems to depend on initial conditions, over boundary conditions and initial velocity, similar to the 1D wave equation.