MAT 161—Exam \#2A—10/21/14

Name: \qquad
Calculators are NOT allowed. Show all work using correct mathematical notation. Unless otherwise indicated, you may use appropriate short-cut rules for computing derivatives.

1. (15 points) Find the derivative of each of the following functions, and simplify your answers as much as possible.
(a) $f(x)=\frac{4}{x^{3}}$
(b) $g(x)=x^{2} \ln x$
(c) $h(x)=\sin (2 x)+\pi^{4}$
2. (10 points) Find the equation of the tangent line to the curve $y=\sqrt{x}$ at $x=9$.
3. (15 points) Let $f(x)=x^{2}+3 x$. State the definition of the derivative in terms of a limit, and use it to calculate $f^{\prime}(x)$. No credit will be given for short-cut methods.
4. (10 points) A particle's position (in meters) after t seconds is given by $s(t)=4 \cos (\pi t)$.
(a) Find the particle's velocity function.
(b) Find the particle's acceleration (the rate of change of velocity) at $t=2$.
5. (25 points) Find $\frac{d y}{d x}$ for each function below. You do not need to simplify your answers, but you must include all necessary parentheses!
(a) $y=e^{x} \sec x$
(b) $y=\frac{\sin ^{-1} x}{x^{3}+7}$
(c) $y=x^{2} 7^{\tan x}$
(d) $y=\sin ^{9}\left(e^{5 x}\right)$
(e) $y=(\ln (\ln x))^{4}$
6. (12 points) Find $\frac{d y}{d x}$ for the curve $x y^{3}+5 \sin y=12$.
7. (13 points) The bottom of a 10 -foot ladder slides away from a wall at a rate of $3 \mathrm{ft} / \mathrm{sec}$. How fast is the top of the ladder sliding down the wall when it is 6 feet above the floor?
