MAT 161—Sample Final Exam

Name: _____

Calculators are NOT allowed. Show all work using correct mathematical notation.

1. (10 points) Calculate each of the following limits.

(a)
$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$$

(b)
$$\lim_{x \to \frac{\pi}{2}} \frac{x-5}{\cos^2 x}$$

2. (15 points) Find the derivative of each of the following functions.

(a)
$$f(x) = \frac{\ln x}{x^3}$$

(b)
$$g(x) = e^{\sin^{-1} x} \csc 5x$$

(c) $h(x) = \sin^5(\cos^3 x)$

3. (15 points) Evaluate each of the following integrals.

(a)
$$\int \frac{x^4 dx}{(x^5+1)^3}$$

(b)
$$\int_0^{\pi/4} \tan^7 x \sec^2 x \, dx$$

4. (10 points) Let
$$A(x) = \int_{3}^{x} (t^{2} - 1)^{1/3} dt$$
.
(a) Calculate $A(3)$.

(b) Calculate A'(3).

(c) For what values of x is A(x) increasing?

- 5. (10 points) Consider the function y = f(x) graphed in Figure 14 on page 88 of the text.
 - (a) Evaluate each of the following, or state that it does not exist.
 - (i) $\lim_{x \to 3} f(x)$
 - (ii) f(3)
 - (iii) $\lim_{x \to 1^-} f(x)$
 - (iv) $\lim_{x \to 5} f(x)$
 - (b) At what value(s) of x does f fail to be continuous?

6. (15 points) Sketch the graph of the function $f(x) = x^3 - 6x^2 + 3$, clearly labeling the coordinates of all local extrema and inflection points.

7. (13 points) State the definition of the derivative in terms of a limit, and use it to calculate the derivative of $f(x) = \sqrt{x}$. No credit will be given for shortcut methods.

8. (12 points) Find the equation of the tangent line to the curve $x + y^3 \cos x + \frac{4}{y} = 10$ at the point (0, 2).

9. (13 points) A circular oil slick is expanding at a rate of 40 square meters per hour. How fast is its radius increasing at the instant when its area is 100π square meters?

10. (12 points) The acceleration (in m/s²) of a particle moving along a straight line is given by a(t) = 12t. The particle's initial velocity is 10 m/s, and its initial position is 20 meters to the right of the origin. Where is the particle located after 3 seconds? 11. (10 points) Use 4 rectangles with heights determined by the right-hand endpoints to estimate the area under the curve $f(x) = \ln x$ on the interval [1,3]. Show your rectangles on the sketch provided. Do not attempt to add up the terms in your sum.

12. (15 points) If 1000 cm^2 of material is available to make a cylindrical can with no top, find the largest possible volume of the can, and justify that your solution gives a maximum.