MAT 161-Sample Final Exam

Name: \qquad
Calculators are NOT allowed. Show all work using correct mathematical notation.

1. (10 points) Calculate each of the following limits.
(a) $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$
(b) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{x-5}{\cos ^{2} x}$
2. (15 points) Find the derivative of each of the following functions.
(a) $f(x)=\frac{\ln x}{x^{3}}$
(b) $g(x)=e^{\sin ^{-1} x} \csc 5 x$
(c) $h(x)=\sin ^{5}\left(\cos ^{3} x\right)$
3. (15 points) Evaluate each of the following integrals.
(a) $\int \frac{x^{4} d x}{\left(x^{5}+1\right)^{3}}$
(b) $\int_{0}^{\pi / 4} \tan ^{7} x \sec ^{2} x d x$
4. (10 points) Let $A(x)=\int_{3}^{x}\left(t^{2}-1\right)^{1 / 3} d t$.
(a) Calculate $A(3)$.
(b) Calculate $A^{\prime}(3)$.
(c) For what values of x is $A(x)$ increasing?
5. (10 points) Consider the function $y=f(x)$ graphed in Figure 14 on page 88 of the text.
(a) Evaluate each of the following, or state that it does not exist.
(i) $\lim _{x \rightarrow 3} f(x)$
(ii) $f(3)$
(iii) $\lim _{x \rightarrow 1^{-}} f(x)$
(iv) $\lim _{x \rightarrow 5} f(x)$
(b) At what value(s) of x does f fail to be continuous?
6. (15 points) Sketch the graph of the function $f(x)=x^{3}-6 x^{2}+3$, clearly labeling the coordinates of all local extrema and inflection points.
7. (13 points) State the definition of the derivative in terms of a limit, and use it to calculate the derivative of $f(x)=\sqrt{x}$. No credit will be given for shortcut methods.
8. (12 points) Find the equation of the tangent line to the curve $x+y^{3} \cos x+\frac{4}{y}=10$ at the point $(0,2)$.
9. (13 points) A circular oil slick is expanding at a rate of 40 square meters per hour. How fast is its radius increasing at the instant when its area is 100π square meters?
10. (12 points) The acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) of a particle moving along a straight line is given by $a(t)=12 t$. The particle's initial velocity is $10 \mathrm{~m} / \mathrm{s}$, and its initial position is 20 meters to the right of the origin. Where is the particle located after 3 seconds?
11. (10 points) Use 4 rectangles with heights determined by the right-hand endpoints to estimate the area under the curve $f(x)=\ln x$ on the interval [1,3]. Show your rectangles on the sketch provided. Do not attempt to add up the terms in your sum.

$$
R_{4}=
$$

\qquad $+$ \qquad $+$ \qquad $+$ \qquad
12. (15 points) If $1000 \mathrm{~cm}^{2}$ of material is available to make a cylindrical can with no top, find the largest possible volume of the can, and justify that your solution gives a maximum.

