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Review of the Definite Integral

To approximate the area between the graph of a continuous function y = f(x) and the
x-axis on the interval [a, b], we divide into N subintervals of width ∆x = (b − a)/N , and
write xi = a + i∆x for the right-hand endpoint of the ith subinterval. Using a rectangle of
height f(xi) and width ∆x to approximate the area under the curve on the ith subinterval,
we see that the Riemann sum

RN =
N∑
i=1

f(xi)∆x

approximates the total area under the curve on the interval [a, b]. We get the exact area by
letting N → ∞, which gives the definite integral of f from a to b:∫ b

a

f(x) dx = lim
N→∞

N∑
i=1

f(xi)∆x.

If f takes both positive and negative values, the definite interval gives the signed (or net)
area under the curve. When f(x) has an anti-derivative, the calculation of the definite
integral is greatly simplified by the following theorem, which may be interpreted as saying
that the definite integral of a rate of change gives the total change.

The Fundamental Theorem of Calculus (Part I). If f is continuous on [a, b] and
F is any antiderivative of f , then∫ b

a

f(x) dx = F (b)− F (a).

Example 1. Evaluate each of the following definite integrals.

(a)

∫ 4

0

√
x dx (b)

∫ π/6

0

cos 3x dx

Example 2. Find the area under the curve y = 1/x between x = 2 and x = 6.



§6.1—Area Between Two Curves

Slicing the region. To find the area of the region bounded above by y = f(x) and below
by y = g(x) on the interval a ≤ x ≤ b, we again divide the interval into N subintervals. If xi

denotes any point in the ith subinterval, then we can use a rectangle of height f(xi)− g(xi)
and width ∆x to approximate the ith “slice” of our region:

We then add up the contributions from all the slices and let N tend to infinity to get an
exact answer. Thus we have

Area = lim
N→∞

N∑
i=1

(f(xi)− g(xi))∆x =

∫ b

a

(f(x)− g(x)) dx.

Note that we’re using the definition of the definite integral as a limit of Riemann sums. We
can think of dx as an infinitesimally small version of ∆x.

Example 1. Find the area of the region bounded by the curves y = x2−7 and y = 5−2x2.
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Example 2. Find the area of the region bounded by the curve y = 4/x2 and the lines
y = x/2 and y = 4x.

Sometimes it is easier to calculate the area of a region by integrating with respect to y.
In this case, the area is given by ∫ d

c

[f(y)− g(y)] dy,

where x = f(y) is the right-hand curve and x = g(y) is the left-hand curve.

Example 3. Find the area of the region bounded by the line y = x−5 and the parabola
y2 = 2x− 2.
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§6.2—Setting Up Integrals: Volume, Density, Average
Value

Computing volumes by slicing. Suppose we have a 3-dimensional solid whose x-
coordinates all lie in the interval [a, b]. Suppose we slice the solid perpendicular to the
x-axis, and let A(x) denote the area of the cross-section formed by this slice. If we slice our
solid into N “slabs” of width ∆x and let xi be any x-coordinate occurring in the ith slab,
then we can approximate the volume of this slab as A(xi)∆x. Adding up the contributions
from all the slices and taking the limit as N → ∞, we get

Volume = lim
N→∞

N∑
i=1

A(xi)∆x =

∫ b

a

A(x) dx.

Example 1. Use slicing to find the volume of a sphere of radius R.

Example 2. The base of a solid is the region bounded by the parabola y = 1− x2 and
the x-axis, and its cross-sections perpendicular to the x-axis are squares. Find the volume
of the solid.
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Density. To find the mass of a thin wire or rod of variable density, we slice it into small
pieces. Suppose that the rod’s linear mass density at x (say in kg/m) is ρ(x) and that the
rod extends from x = a to x = b. Then the mass of a small piece of the rod of length ∆x
centered at xi is given by Mi ≈ ρ(xi)∆x, so the total mass is

M = lim
N→∞

N∑
i=1

Mi = lim
N→∞

N∑
i=1

ρ(xi)∆x =

∫ b

a

ρ(x) dx.

Example 3. Find the total mass of a 1-meter rod whose linear density function is
ρ(x) = 10(x+ 1)−3 kg/m for 0 ≤ x ≤ 1.

A similar idea can be used to analyze two-dimensional mass or population densities that
vary with the distance from a central point. For instance, to find the population within
a certain radius R of a city’s center, we divide the circle into N thin concentric bands of
thickness ∆r. The band whose outer boundary is at a distance ri from the center has area
approximately 2πri∆r, so the population residing within this band is Pi ≈ 2πriρ(ri)∆r.
Thus the total population is

P = lim
N→∞

N∑
i=1

Pi = lim
N→∞

N∑
i=1

2πρ(ri)∆r =

∫ R

0

2πrρ(r) dr.

Example 4. The radial density function for a city’s population (in thousands of people
per square mile) is ρ(r) = 20(1 + r2)−1/2. How many people live within 5 miles of the city’s
center?
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Average Value. Suppose we want to know the “average” or “typical” y-value of a
function f(x) on the interval [a, b]. Since there are infinitely many points to consider, we
can’t compute average in the usual way, but we can approximate by subdividing the interval
and averaging the values at the right-hand endpoints:

fave ≈
1

N

N∑
i=1

f(xi) =
1

b− a

N∑
i=1

f(xi)∆x,

where ∆x = (b− a)/N . Letting N → ∞ gives

fave =
1

b− a

∫ b

a

f(x) dx.

For positive functions, fave is the height of a rectangle having the same area as the area
under the curve.

Example 5. Find the average value of the function f(x) = sinx on the interval [0, π].

Recall that if s(t) denotes the position of a particle at time t and v(t) denotes the particle’s
instantaneous velocity, then by using the Fundamental Theorem of Calculus we find that
the particle’s average velocity on the interval [a, b] is

s(b)− s(a)

b− a
=

1

b− a

∫ b

a

v(t) dt.

Hence our new definition of average value for a velocity function agrees with our old definition
of average velocity.

Mean Value Theorem for Integrals. If f is continuous on [a, b], then there exists a
number c in [a, b] such that fave = f(c).

Example 6. Find a a number c in the interval [0, 2] such that the average value of
f(x) = x3 on [0, 2] is equal to f(c).
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§6.3—Volumes of Revolution

Given a region in the xy-plane, we can generate a 3-dimensional solid by rotating each
point in the region about a given axis. For example, a sphere can be obtained by rotating
the top half of a disk about the x-axis.

Example 1. Find the volume of the solid obtained by revolving the region bounded by
the curve y = ex and the lines y = 0, x = 0, and x = 2 about the x-axis.

Example 2. Find the volume of the solid generated by revolving the region in the first
quadrant bounded by the curve y = x2 and the line y = 4 about the y-axis.

Example 3. Find the volume of the solid generated by revolving the region bounded by
the curves y = x3 and y =

√
x about the x-axis.
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Basic formula for the disk/washer method about a horizontal axis:

V =

∫ b

a

π([R(x)]2 − [r(x)]2) dx,

where R(x) is the outer radius and r(x) is the inner radius. For a vertical axis, the integration
will be with respect to y instead of x.

Example 4. Find the volume of the solid generated by revolving the region used in
Example 3 about the y-axis.

Example 5. Let R be the region bounded by the curve y = x2 and the lines y = 0 and
x = 2. Set up integrals for the volumes of the solids generated by revolving R about

(a) the x-axis (c) the line y = 5

(b) the y-axis (d) the line x = 3
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§6.4—The Method of Cylindrical Shells

In §6.3, we looked at slices perpendicular to the axis of revolution, and each slice traced
out a disk or washer as it revolved about the axis. An alternative approach for computing
volumes of revolution is to use slices parallel to the axis, which trace out cylindrical shells.

Example 1. Find the volume of the solid generated by revolving the region bounded by
the curve y = x3 + x+ 1 and the lines y = 0, x = 0, and x = 1 about the y-axis.

Example 2. Find the volume of the solid generated by revolving the region in the first
and second quadrants bounded by the parabolas x = 3y2 − 2 and x = y2 about the x-axis.

Basic formula for the cylindrical shell method about a vertical axis:

V =

∫ b

a

2πr(x)h(x) dx,

where r(x) is the shell radius and h(x) is the shell height. For a horizontal axis, the integra-
tion will be with respect to y instead of x.
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Example 3. Find the volume of the solid obtained by revolving the region in the first
quadrant bounded by the curve y = cos(x2) and the lines y = 1, x = 0, and x =

√
π/2

about the y-axis.

Example 4. Let R be the region bounded by the curve y = x2 and the lines y = 0
and x = 2, as considered in Example 5 from the §6.3 notes. Use the shell method to set up
integrals for the volumes of the solids generated by revolving R about

(a) the x-axis (c) the line y = 5

(b) the y-axis (d) the line x = 3

Washers versus Shells

Method Axis of revolution Types of slices Integrate with respect to

Washers horizontal line vertical strips x
Washers vertical line horizontal strips y
Shells horizontal line horizontal strips y
Shells vertical line vertical strips x

Note that in the washer method the slices are always perpendicular to the axis of revo-
lution and in the shell method the slices are always parallel to the axis of revolution.
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§6.5—Work and Energy

Work. Recall that work is defined by the basic equation

Work = Force×Distance

when the force is constant and acts in the direction of motion. The typical units for work
are therefore Newton-meters (Joules) or foot-pounds. Work can be viewed as the energy
expended in accomplishing a task.

If the force is not constant, then we need a slicing approach to calculate work. If F (x)
represents the force at position x, then the work done over the interval [x, x+∆x] is approx-
imately F (x)∆x, so the total work done over the interval [a, b] is

W =

∫ b

a

F (x) dx.

Note that there is a strong analogy with the calculation of distance traveled from velocity.
If velocity is constant, then distance = velocity × time, but if the velocity varies, then we
need the integral of velocity to calculate distance.

Springs. A simple example of a varying force occurs when stretching a spring. Hooke’s
Law states that the force required to stretch or compress a string x units from its natural
length is F (x) = kx, where k is a number known as the spring constant.

Example 1. A certain spring requires a force of 80 Newtons to stretch from its natural
length of 2 meters to a length of 4 meters. How much work is required to stretch it from
rest to a length of 5 meters?

Vertical Ropes and Cables. Suppose that a cable or rope is used to raise a heavy
object like a cement block from the ground to some given height. The work in raising the
object can be calculated using Work = Force × Distance, but finding the work done in
raising the cable is trickier. There are two ways to think about breaking the problem down:

(1) Consider raising the entire cable a small distance, OR

(2) Consider raising a small slice of the cable all the way to the top.

The first approach is what we used for springs, but the second approach is more useful
for many of the applications we want to consider. Therefore we take the second approach in
the next example.
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Example 2. A uniform cable 20 feet long hangs from the top of a tall building. If the
cable weighs 3 pounds per foot, find the work done in raising the entire cable to the top.

Pumping liquids from tanks. The method used in Example 2 (slicing the object into
small pieces and moving each piece all the way to the top) applies very nicely to situations
in which liquid is being pumped from a tank. The work integral that arises will depend on
the geometry of the slices that occur in each particular problem.

Example 3. A cylindrical tank of height 10 meters and radius 5 meters is filled to a
height of 8 meters with water, which weighs 9800 Newtons per cubic meter. Find the work
required to pump all the water to the top of the tank.
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Example 4. A tank has the shape of a cone (with the vertex at bottom) with height
12 feet and radius 4 feet. If the tank is completely filled with water, which weighs 62.4
pounds per cubic foot, find the work required to pump all the water out through a spout
that extends 1 foot above the tank’s top.

§8.2—Fluid Pressure and Force

Hydrostatic Pressure and Force. The pressure (or force per unit area) of a fluid at
a given depth below the surface is determined by the equation

Pressure = Weight Density ×Depth.

The weight density typically has units of N/m3 or lb/ft3, so that the units of pressure are
N/m2 (Pascals) or lb/ft2. We’ll often find it useful to recall that the weight density of water
is approximately

62.4 lb/ft3 or 9800 N/m3.

The force on a thin horizontal plate submerged in a liquid can be calculated using the
equation

Force = Pressure× Area,

since the pressure is constant along the plate. At a fixed depth, the pressure exerted by a
fluid is the same in all directions, so a force of this magnitude is exerted on both the top
and the bottom of the plate. If the plate is submerged vertically, then the pressure is not
constant throughout, so the force on it must be calculated by slicing, and this leads to an
integral.
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Example 1. Consider a swimming pool 5 meters wide, 10 meters long, and 3 meters
deep. If the pool is completely filled with water, find the force on

(a) the bottom of the pool.

(b) one of the 5× 3 ends of the pool.

Example 2. The vertical ends of a tank are semi-circles of radius 10 feet with diameter
running along the top. If the tank is filled to the top with water, find the force on one end
of the tank.
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§8.1—Arc Length and Surface Area

Suppose we want to compute the length of a curve in the plane. If we think of ds as the
length of a small piece of the curve, then we can use the Pythagorean Theorem to write

ds ≈
√

(dx)2 + (dy)2.

If the curve is given by the function y = f(x) on [a, b] then we have dy = f ′(x)dx, so

ds ≈
√

(dx)2 + (f ′(x)dx)2 =
√

(dx)2(1 + [f ′(x)]2) =
√
1 + [f ′(x)]2 dx

The total length of the curve is then given by

L =

∫ b

a

√
1 + [f ′(x)]2 dx.

Once again, we view the integral as adding up the contributions from the individual pieces.

Example 1. Find the length of the curve y = 2x3/2 from x = 0 to x = 1.

Example 2. Find the circumference of a circle of radius R.
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If we revolve a curve y = f(x) on the interval [a, b] about the x-axis, then we can calculate
the area of the resulting surface by breaking the curve into pieces, just as we did for arc
length. A piece of the curve of length ds at an average distance y from the x-axis traces out
a surface that is well-approximated by a slice of a cone whose area is approximately 2πy ds.
Thus we find that the area of the entire surface of revolution is

S =

∫ b

a

2πf(x)
√
1 + [f ′(x)]2 dx.

Similar formulas can be obtained for rotation about other axes.

Example 3. Find the area of the surface obtained by revolving the portion of the curve
y = x3 from x = 0 to x = 1 about the x-axis.

Example 4. Find the surface area of a sphere of radius R.
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§7.1—Numerical Integration

Many functions (for example, ex
2
and

√
1 + x3) do not have elementary antiderivatives.

The Fundamental Theorem of Calculus does not allow us to evaluate definite integrals of such
functions exactly, so we must instead rely on approximations. For purposes of illustration,
we will work with an integral that we can evaluate exactly:∫ 1

0

4

1 + x2
dx = 4 tan−1 x

∣∣∣∣1
0

= π ≈ 3.14159265358.

This will allow us to get a feel for the relative accuracy of our various approximation methods.
The methods are all based on the fact that the definite integral is a limit of Riemann sums.
When N subdivisions are used to approximate

∫ b

a
f(x) dx, we write ∆x = (b − a)/N for

the width of each subinterval and xj = a + j∆x for the right-hand endpoint of the jth
subinterval.

Left and Right Sums. We have already discussed approximations based on rectangles
whose heights were determined by the value of the function at the left or right endpoint of
each subinterval:

LN = ∆x[f(x0) + f(x1) + · · ·+ f(xN−1)] and RN = ∆x[f(x1) + f(x2) + · · ·+ f(xN)].

Example 1. Compute the approximations L10 and R10 for the integral

∫ 1

0

4

1 + x2
dx.

The Midpoint and Trapezoidal Rules. We often get a more accurate estimate by
choosing the rectangle heights to be the value of f at the midpoints

x̄j =
1

2
(xj−1 + xj)

of the subintervals. This gives the approximation

MN = ∆x[f(x̄1) + f(x̄2) + · · ·+ f(x̄N)].

A similar idea is to average the left and right-hand approximations; this is equivalent to
approximating with trapezoids and gives the estimate

TN = 1
2
(LN +RN) =

∆x

2
[f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xN−1) + f(xN)].
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Example 2. Compute the approximations M10 and T10 for the integral

∫ 1

0

4

1 + x2
dx.

Error Estimates. If |f ′′(x)| ≤ K2 for all x in [a, b], then the errors in the trapezoidal
and midpoint rules satisfy

|ET | ≤
K2(b− a)3

12N2
and |EM | ≤ K2(b− a)3

24N2
.

Example 3. Consider the integral

∫ 5

2

ln x dx.

(a) Compute upper bounds for the error in using the trapezoidal and midpoint rules with
N = 6 to approximate the integral.

(b) How large must N be in order to guarantee that |ET | ≤ 10−5?

18



Simpson’s Rule. Because the midpoint rule tends to be about twice as accurate as
the trapezoidal rule and the errors tend to have opposite signs, we can expect to improve
our approximations by taking a weighted average. When N is even, the Simpson’s Rule
approximation is given by

SN = 1
3
TN/2+

2
3
MN/2 =

∆x

3
[f(x0)+4f(x1)+2f(x2)+4f(x3)+· · ·+2f(xN−2)+4f(xN−1)+f(xN)].

This method is equivalent to approximating f by parabolas on each subinterval.

Example 4. Compute S10 for the integral

∫ 1

0

4

1 + x2
dx.

Example 5. Compute S6 for the integral

∫ 2

0

e−x2

dx.

The Error in Simpson’s Rule. If |f (4)(x)| ≤ K4 for all x in [a, b] then the error in
Simpson’s Rule satisfies

|ES| ≤
K4(b− a)5

180N4
.

Example 6. Estimate the error in using S6 to approximate

∫ 5

2

ln x dx, and determine

how large N must be in order to guarantee that |ES| ≤ 10−5.
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§7.2—Integration by Parts

It is not true that the integral of a product is the product of the integrals. To deal with
integrals of products, we can try to reverse the product rule:

(uv)′ = uv′ + vu′ =⇒ uv =

∫
uv′ +

∫
vu′ =⇒

∫
uv′ = uv −

∫
vu′.

We usually write this in the form ∫
u dv = uv −

∫
v du.

The point is that we can integrate the product u dv if we know how to integrate v du.

Example 1. Evaluate

∫
xex dx.

Example 2. Evaluate

∫
x sin 3x dx.

Example 3. Evaluate

∫ e

1

lnx dx.
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How to choose u and dv. When making this decision, we should keep in mind that
we are essentially trading in the problem

∫
u dv for the alternative problem

∫
v du. Thus we

should consider the following:

1. We must know how to integrate dv; otherwise we cannot find v.

2. It is often helpful if v is simpler (or at least no more complicated) than dv.

3. It is often helpful if du is simpler (or at least no more complicated) than u.

Notice that Examples 1 and 2 are classic cases of this strategy, letting u be a power func-
tion and dv be an exponential, sine, or cosine. In Example 3, we followed Recommendation
#3 but not #2 because what really matters (and what we were able to achieve) is that the
product v du is simpler than the original product u dv.

Example 4. Evaluate

∫
x2 cos 5x dx.

Example 5. Evaluate

∫
sin−1 x dx.
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Example 6. Evaluate

∫
cos(

√
x) dx by first making the substitution w =

√
x.

Example 7. Evaluate the integral I =

∫
ex cos x dx.
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§7.3—Trigonometric Integrals

By making use of basic trig identities in combination with the substitution method, we
can handle many integrals involving powers of trig functions. Most of the manipulations are
based on the Pythagorean identities

cos2 x+ sin2 x = 1, 1 + tan2 x = sec2 x, cot2 x+ 1 = csc2 x.

Integrals involving an odd power of sinx or cosx can be handled by splitting off one factor
from the odd power and applying the first identity above to what remains.

Example 1. Evaluate

∫
sin2 x cos5 x dx.

When only even powers of sinx or cosx occur in an integral, we must instead use the
double-angle formulas

cos2 x =
1 + cos 2x

2
and sin2 x =

1− cos 2x

2
.

Example 2. Evaluate

∫
cos4 x dx.
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Example 3. Evaluate

∫
tan3 x sec4 x dx.

§7.4—Trigonometric Substitution

The Pythagorean identities also allow us to convert certain algebraic expressions into
powers of trig functions by making a trig substitution.

Example 1. Evaluate

∫
dx

x2
√
1− x2

.

Example 2. Evaluate

∫
dx

x2
√
x2 − 9

.
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Example 3. Evaluate

∫ 2

0

x3 dx√
x2 + 4

The 3 basic substitutions.

1. Forms involving
√
a2 − x2, where −a ≤ x ≤ a.

Let x = a sin θ, where −π/2 ≤ θ ≤ π/2. Then
√
a2 − x2 =

√
a2(1− sin2 θ) = a cos θ.

2. Forms involving
√
x2 − a2, where x ≥ a.

Let x = a sec θ, where 0 ≤ θ < π/2. Then
√
x2 − a2 =

√
a2(sec2 θ − 1) = a tan θ.

3. Forms involving
√
a2 + x2.

Let x = a tan θ, where −π/2 < θ < π/2. Then
√
a2 + x2 =

√
a2(1 + tan2 θ) = a sec θ.

Example 4. Evaluate

∫ √
16− x2 dx.

25



Example 5. Evaluate

∫ 10

5
√
2

√
x2 − 25

x
dx.

Example 6. Evaluate

∫
dx

(x2 + 4x+ 7)5/2
.
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§7.6—The Method of Partial Fractions

We often simplify the sum or difference of rational functions by getting a common de-
nominator. For example,

1

x+ 2
− 1

x+ 5
=

(x+ 5)− (x+ 2)

(x+ 2)(x+ 5)
=

3

x2 + 7x+ 10
.

If we want to integrate this function, however, the form on the left is actually simpler to
deal with:∫

3 dx

x2 + 7x+ 10
=

∫
dx

x+ 2
−
∫

dx

x+ 5
= ln |x+ 2| − ln |x+ 5|+ C = ln

∣∣∣∣x+ 2

x+ 5

∣∣∣∣+ C.

Therefore we want to learn how to reverse the process of getting a common denominator;
this is known as the method of partial fractions.

Example 1. Evaluate

∫
1

x2 + 2x
dx.

Example 2. Evaluate

∫
2x+ 1

x2 − 7x+ 12
dx.

If the denominator does not break down into distinct linear factors, we need to modify
the form of the partial fraction expansion. The general procedure is as follows:
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1. If the degree of the numerator is greater than or equal to the degree of the denominator,
do long division.

2. Factor the denominator completely.

3. For each factor (x− r)m, allow the terms
A1

x− r
+

A2

(x− r)2
+ · · ·+ Am

(x− r)m
.

4. For each factor (x2 + px+ q)n, where x2 + px+ q is irreducible, allow the terms

B1x+ C1

x2 + px+ q
+

B2x+ C2

(x2 + px+ q)2
+ · · ·+ Bnx+ Cn

(x2 + px+ q)n
.

5. Clear denominators, solve for the constants and integrate.

Example 3. Write down the form of the partial fraction decomposition for

R(x) =
x5 + 4x+ 1

(x− 2)(x+ 3)3(x2 + 5)(x2 + x+ 1)2
.

Example 4. Evaluate

∫
x2 + 1

x3 + 4x2 + 4x
dx.
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Example 5. Evaluate

∫
x3 − 2

x3 + 4x
dx.

§7.7—Improper Integrals

We can make sense of integrals in which one limit is infinite by evaluating the integral
up to some finite number b and then taking the limit of our answer as b → ∞.

Example 1. Evaluate each of the following.

(a)

∫ ∞

1

1

x2
dx

(b)

∫ ∞

1

1

x
dx
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A similar approach can be applied to handle integrals in which the integrand has a vertical
asymptote at one endpoint. For example, to integrate 1/x2 from 0 to 1 we can integrate
from a to 1 (where a is a small positive number) and then take the limit as a → 0+.

Example 2. Evaluate each of the following.

(a)

∫ 1

0

1

x2
dx

(b)

∫ 1

0

1√
x
dx

Example 3. Evaluate each of the following.

(a)

∫ 3

−∞
e2x dx

(b)

∫ 2

1

dx

x ln x
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(c)

∫ ∞

0

xe−x dx

If both limits are infinite or if there is a discontinuity in the interior of the interval, then
we must split the integral into two improper integrals.

Example 4. Evaluate

∫ 1

−2

1

x4
dx.

By generalizing the calculations in Examples 1, 2, and 4, we obtain the following useful
facts: ∫ ∞

1

1

xp
dx converges if p > 1 and diverges if p ≤ 1∫ 1

0

1

xp
dx converges if p < 1 and diverges if p ≥ 1

In many cases, it is easy to determine whether an improper integral converges or diverges
even if we do not know how to evaluate it exactly. The idea is to compare it with a simpler
integral that we do understand–such as one of the “p-integrals” above.

The Comparison Theorem. Suppose that 0 ≤ f(x) ≤ g(x) for x ≥ a.

If

∫ ∞

a

g(x) dx converges, then

∫ ∞

a

f(x) dx converges

If

∫ ∞

a

f(x) dx diverges, then

∫ ∞

a

g(x) dx diverges
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Example 5. Determine whether each of the following integrals converges or diverges.

(a)

∫ ∞

1

sin2 x

x3 + 1
dx

(b)

∫ ∞

2

1 + e−x

√
x2 − 3

dx

(c)

∫ ∞

1

e−x2

dx

Example 6. (Gabriel’s Horn) A solid is generated by revolving the infinite region
bounded by the curve y = 1/x and the x-axis for x ≥ 1 about the x-axis. Show that this
object has finite volume but infinite surface area.
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§10.1—Sequences

An infinite sequence is a function whose domain is the positive integers. For example,
the formula an = 1/n defines a sequence whose values are

a1 = 1, a2 =
1

2
, a3 =

1

3
, a4 =

1

4
, a5 =

1

5
, . . . .

In this case, we have lim
n→∞

an = 0, so we say that the sequence {an} converges to 0.

Example 1. Find a formula for the nth term of each of the following sequences and
determine the limits of the convergent sequences.

(a) {an} = {1
2
, 2
3
, 3
4
, 4
5
, 5
6
, 6
7
, . . . } (b) {bn} = {2, 5, 10, 17, 26, 37, 50, . . . }

(c) {cn} = {−1, 1,−1, 1,−1, 1, . . . } (d) {dn} = {−1
3
, 1
9
,− 1

27
, 1
81
,− 1

243
, 1
729

, . . . }

Example 2. Find the limits of the following sequences.

(a) an =
n2 + 1

3n2

(b) bn = ln(2n+ 1)− lnn

(c) cn =
cosn

n
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Just as for functions of a real variable, limits of sequences that take the form “0/0” or
“∞/∞” may be evaluated using L’Hôpital’s Rule.

Example 3. Find the limits of the following sequences.

(a) an =
lnn√
n

(b) bn = n1/n

Many sequences of interest involve factorials. We write n! = n(n− 1)(n− 2) · · · 3 · 2 · 1
for the product of the first n positive integers and read this as “n factorial”.

Example 4. Find the limits of the following sequences.

(a) an =
3n

n!

(b) bn =
n2(2n− 1)!

(2n+ 1)!
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Example 5. Find the limit of the sequence an =

(
1 +

1

n

)n
.

§10.2—Summing an Infinite Series

An infinite series is the sum of an infinite sequence of numbers:

∞∑
n=1

an = a1 + a2 + a3 + . . . .

To make sense of an infinite series, we look at the sequence of partial sums, defined by

SN =
N∑

n=1

an = a1 + a2 + a3 + · · ·+ aN .

If lim
N→∞

SN = S, then we say that the series converges to S, and we refer to S as the sum

of the infinite series. If the limit of partial sums does not exist, then the series diverges.

The series-integral analogy. Notice that this is the same terminology we used when
studying improper integrals. Conceptually, the partial sums SN play the role of the “partial
integrals”

∫ b

1
f(x) dx. The idea is once again to deal with a finite problem first and then

introduce a limit to handle the infinite problem.

Changing the starting point. It is not necessary that an infinite series start with the
n = 1 term. Depending on the formula for an, it may be convenient to start at n = 0, n = 2,
or some other value, say n = k. Thus in general we may consider series of the shape

∞∑
n=k

an = ak + ak+1 + ak+2 + . . .

Here the Nth partial sum is defined to be the sum of the terms up to and including aN .
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A version of Zeno’s dichotomy paradox states that one cannot get from point A to
point B because one must first cover half the remaining distance, then half of the new
remaining distance, etc. This creates an infinite process that appears to have no conclusion.
Fortunately, we can use the theory of infinite series to resolve this issue:

Example 1. Find the sum of the series
∞∑
n=1

(
1

2

)n
=

1

2
+

1

4
+

1

8
+

1

16
+

1

32
+ . . ..

The type of series encountered in Example 1 is called a geometric series. In general, a
geometric series has the form

∞∑
n=0

crn = c+ cr + cr2 + cr3 + . . . .

Here c is the first term, and r is the common ratio between successive terms. By proceeding
as in Example 1, we can find a formula for the Nth partial sum, SN . We have

SN = c+ cr + cr2 + · · ·+ crN−1 + crN and rSN = cr + cr2 + cr3 + · · ·+ crN + crN+1,

so subtracting gives (1− r)SN = c− crN+1, and thus

SN =
c− crN+1

1− r
,

provided that r ̸= 1. Notice that if |r| < 1 then rN+1 approaches 0 as N → ∞, so we have

∞∑
n=0

crn = lim
N→∞

SN =
c

1− r
(|r| < 1).

The series diverges if |r| ≥ 1.
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Example 2. Find the sum of each series if it converges.

(a)
∞∑
n=1

3n+2

5n

(b)
∞∑
n=0

en

2n+1

Example 3. Express each repeating decimal as a fraction.

(a) .9

(b) .15
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Example 4. Find the sum of the series
∞∑
n=1

1

n(n+ 1)
=

1

2
+

1

6
+

1

12
+

1

20
+ . . ..

The Divergence Test. It is fairly obvious that if
∞∑
n=1

an converges then we must have

lim
n→∞

an = 0. Therefore, if lim
n→∞

an ̸= 0, we may conclude that the series diverges.

WARNING: The converse of this statement is false!

For example, lim
n→∞

1

n
= 0, but

∞∑
n=1

1

n
diverges!

Example 5. Let an =
4 + 3n2

6n2 − 2
. Evaluate

(a) lim
n→∞

an

(b)
∞∑
n=1

an
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§10.3—Convergence of Series with Positive Terms

Example 1. Determine whether the series
∞∑
n=1

1

n
converges.

Example 2. Determine whether the series
∞∑
n=2

1

n2
converges.

The Integral Test. If f(x) is continuous, positive, and decreasing for x ≥ 1, then the

series
∞∑
n=1

f(n) and the integral

∫ ∞

1

f(x) dx either both converge or both diverge.

The p-series test. By taking f(x) =
1

xp
in the Integral Test and using the results of

§7.7, we find that the p-series
∞∑
n=1

1

np
converges if p > 1 and diverges if p ≤ 1.
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Example 3. Determine whether the following series converge.

(a)
∞∑
n=1

ne−n2

(b)
∞∑
n=2

1

n lnn

Just as we saw for improper integrals in §7.7, we can often determine whether a series
converges by comparing it with a simpler series that we already understand. The two most
useful series for comparisons are:

1. The p-series
∞∑
n=1

1

np
, which converges for p > 1 and diverges for p ≤ 1

2. The geometric series
∞∑
n=0

crn, which converges for |r| < 1 and diverges for |r| ≥ 1

The Direct Comparison Test. Suppose that 0 ≤ an ≤ bn for n sufficiently large.

(i) If
∑

bn converges, then
∑

an converges.

(ii) If
∑

an diverges, then
∑

bn diverges.
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Example 4. Determine whether the following series converge.

(a)
∞∑
n=1

1

n3n

(b)
∞∑
n=3

lnn√
n

(c)
∞∑
n=1

1 + cosn

n2

Growth Rates of Sequences. Recall that two positive sequences an and bn grow at
the same rate if

0 < lim
n→∞

an
bn

< ∞.

If the limit is 0, then an grows slower than bn. If the limit is ∞, then an grows faster than
bn. Since the convergence or divergence of a series depends only on the long-term behavior,
we can replace the inequalities ≤ and ≥ in the Direct Comparison Test by the notions of
“grows no faster than” and “grows no slower than”. This yields the following test, which is
often more powerful.
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The Limit Comparison Test. Suppose that an, bn > 0 and let

L = lim
n→∞

an
bn

.

(i) If 0 < L < ∞ then
∑

an converges if and only if
∑

bn converges.

(ii) If L = 0 and
∑

bn converges then
∑

an converges.

(iii) If L = ∞ and
∑

bn diverges then
∑

an diverges.

Example 5. Determine whether the following series converge.

(a)
∞∑
n=1

n2 + 1√
n7 + 1

(b)
∞∑
n=1

lnn

n3

(c)
∞∑
n=2

1

(lnn)2
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§10.4—Absolute and Conditional Convergence

We know that the harmonic series

1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · ·+ 1

n
+ . . .

diverges, since it is a p-series with p = 1. However, the alternating harmonic series

1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·+ (−1)n−1

n
+ . . .

converges. This is a consequence of the following theorem.

The Alternating Series Test. Suppose that

a1 > a2 > a3 > · · · > 0 and lim
n→∞

an = 0.

Then the series
∞∑
n=1

(−1)n−1an = a1 − a2 + a3 − a4 + . . .

converges. Furthermore, if S is the sum of the series and SN is the Nth partial sum, then

|S − SN | < aN+1.

That is, the error in truncating the series is at most the size of the first unused term.

It is easy to give a conceptual proof of this by drawing a picture:

Example 1. Show that the series
∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+ . . . converges, and

determine the maximum error in approximating the sum using the first 10 terms.
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Example 2. Show that the series
∞∑
n=1

(−1)n−1

n2
= 1− 1

4
+

1

9
− 1

16
+ . . . converges, and

determine the maximum error in approximating the sum using the first 5 terms.

We say that the series
∑

an converges absolutely if the series
∑

|an| converges. A
series that converges but does not converge absolutely is said to converge conditionally.
For instance, the series in Example 1 converges conditionally, while the series in Example 2
converges absolutely.

It is easy to see that absolute convergence implies convergence. This observation can be
useful for series with both positive and negative terms, even when the alternating series test
doesn’t apply.

Example 3. Determine whether each of the following series converges absolutely, con-
verges conditionally, or diverges.

(a)
∞∑
n=1

(−1)n−1

√
n

(b)
∞∑
n=1

sinn

3n

(c)
∞∑
n=1

(−1)n−1 lnn
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§10.5—The Ratio and Root Tests

Recall that
∑

an is a geometric series if there is a number r such that an+1/an = r for
each n. Furthermore, the series converges if and only if |r| < 1. More generally, if the ratios
of successive terms of a series approach a common value, then the series behaves much like
a geometric series in the long run, and we get a similar conclusion.

The Ratio Test. Suppose that the limit ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ exists.
(a) If ρ < 1, then the series

∑
an converges absolutely.

(b) If ρ > 1, then the series
∑

an diverges.

(c) If ρ = 1, then the test gives no information.

Example 1. Use the Ratio Test to determine whether the following series converge.

(a)
∞∑
n=1

e2n

n25n

(b)
∞∑
n=1

3n(n!)2

(2n)!
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The Ratio Test is particularly useful for series involving exponential functions (e.g. 2n)
and/or factorials. Series that only involve power functions (e.g. n3 or

√
n) and logarithms

will give ρ = 1, so a different test must be applied (usually comparison with a p-series).

The following test is applicable in similar situations but actually turns out to be slightly
more powerful than the Ratio Test.

The Root Test. Suppose that the limit L = lim
n→∞

|an|1/n exists.

(a) If L < 1, then the series
∑

an converges absolutely.

(b) If L > 1, then the series
∑

an diverges.

(c) If L = 1, then the test gives no information.

Notice that both the Ratio Test and the Root Test are tests for absolute convergence–they
cannot be used to detect conditional convergence.

Example 2. Use the Root Test to determine whether the series
∞∑
n=1

(
4n+ 3

3n+ 2

)n

converges.

Example 3. Let an =

{
n2−n for n odd

2−n for n even
. Does the series

∞∑
n=1

an converge or diverge?
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§10.6—Power Series

A power series centered at c has the form

∞∑
n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + a3(x− c)3 + . . . .

Here x is a variable and a0, a1, a2, . . . are constants. The series may converge for some values
of x and diverge for other values.

Example 1. For what values of x does the power series
∞∑
n=1

xn

√
n

converge?

Example 2. For what values of x does the power series
∞∑
n=1

(x− 4)n

n25n
converge?
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If the power series
∑

an(x− c)n converges absolutely when |x − c| < R and diverges
when |x− c| > R, then R is called the radius of convergence of the series. The interval of
x values for which the series converges is called the interval of convergence; it could be
(c−R, c+R), [c−R, c+R), (c−R, c+R], or [c−R, c+R] depending on what happens at
the endpoints. In Example 1, we have R = 1 and I = [−1, 1). In Example 2, we have R = 5
and I = [−1, 9].

Example 3. Find the radius and interval of convergence for each of the following series.

(a)
∞∑
n=0

n(x+ 1)n

2n

(b)
∞∑
n=0

xn

n!

(c)
∞∑
n=0

n!(x+ 3)n
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§10.7—Taylor Series

When a power series converges, the resulting sum is a function of x. For example, the
geometric series

∞∑
n=0

xn = 1 + x+ x2 + x3 + x4 + . . .

has first term 1 and common ratio x, so it converges to the function f(x) = 1
1−x

whenever
|x| < 1. We want to learn to generate power series for other interesting functions, and the
following example shows that we get some additional mileage out of the geometric series.

Example 1. Find power series representations (valid when |x| < 1) for each of the
following functions.

(a) g(x) =
1

1 + x2

(b) h(x) = tan−1 x

Goal: Given f(x), try to choose coefficients an such that

f(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + . . . .
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After some calculation, we find that an =
f (n)(0)

n!
. Note that by convention 0! = 1. The

series
∞∑
n=0

f (n)(0)

n!
xn = f(0) + f ′(0)x+

f ′′(0)

2
x2 +

f ′′′(0)

6
x3 + . . .

is called the Maclaurin series for f(x). In Example 1, we found two special Maclaurin
series using ad-hoc arguments, but the above formula provides a systematic method.

Example 2. Compute the Maclaurin series for each of the following functions.

(a) f(x) = ex

(b) f(x) = sinx

(c) f(x) = cosx

More generally, the series

T (x) =
∞∑
n=0

f (n)(c)

n!
(x− c)n = f(c) + f ′(c)(x− c) +

f ′′(c)

2
(x− c)2 +

f ′′′(c)

6
(x− c)3 + . . .

is called the Taylor series for f(x) centered at x = c. Note that the Maclaurin series is
just another name for the Taylor series centered at x = 0.
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Example 3. Find the Taylor series for f(x) = lnx about x = 1.

Taylor and Maclaurin series for functions whose series are already known can often be
obtained by a simple manipulation of the original series.

Example 4. Find the Maclaurin series for each of the following functions by using the
results of Example 2.

(a) f(x) = e−x2

(b) f(x) = x cos 3x

The Binomial Series. When |x| < 1, we have

(1 + x)a = 1 + ax+
a(a− 1)

2
x2 +

a(a− 1)(a− 2)

6
x3 + · · ·+

(
a

n

)
xn + . . . ,

where (
a

n

)
=

a(a− 1)(a− 2) · · · (a− n+ 1)

n!
.
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Note that if a is a positive integer, then this is just a finite sum because

(
a

n

)
= 0 when

n > a. In this case, we recover the familiar Binomial Theorem; for instance,

(1 + x)7 = 1 + 7x+ 21x2 + 35x3 + 35x4 + 21x5 + 7x6 + x7.

Example 5. Find the first four terms of the Maclaurin series for f(x) = (1 + x)−1/3.

Example 6. Use the first three terms of a series to estimate each integral and find upper
bounds for the error in your estimates.

(a)

∫ 2/3

0

e−x2

dx

(b)

∫ 1/2

0

(1 + x2)−1/3 dx
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§8.4—Taylor Polynomials

We can get an approximation to the function f(x) when x is close to some fixed number c
by truncating the Taylor series after finitely many terms. This gives the Taylor polynomial
of order n centered at x = c:

Tn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n.

Notice that T1(x) = f(c) + f ′(c)(x− c) is the familiar linear (tangent line) approximation.

Example 1. Find the Taylor polynomial of order 2 for f(x) = 3
√
x centered at c = 8.

Then use it to estimate 3
√
8.1, and find and upper bound for the error.

Example 2. Find the Taylor polynomial of order 2 for f(x) = cos x centered at c = 0.
For what values of x will this polynomial approximate cosx with error at most 0.01?
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To estimate the error in a Taylor polynomial approximation when the series is not alter-
nating, we often need the following result.

Taylor’s Inequality. If f (n+1) is continuous and |f (n+1)(u)| ≤ K whenever u lies between
c and x, then one has

|f(x)− Tn(x)| ≤
K

(n+ 1)!
|x− c|n+1.

Example 3. Find the Taylor polynomial of order 3 for f(x) = ln(1 + 2x) centered at
c = 1, and estimate the accuracy of the approximation f(x) ≈ T3(x) when 0.5 ≤ x ≤ 1.5.

Example 4. Use a Maclaurin polynomial of order 5 to approximate
√
e, and find an

upper bound for the error in your estimate.
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