MAT 162—Exam #3—11/22/11

Name: _____

Show all work using correct mathematical notation. Calculators are not permitted.

1. (12 points) Find the limit of each of the following sequences.

(a)
$$a_n = \frac{e^{3n} + 4}{e^{3n+1} + 5}$$

(b)
$$a_n = \ln(5n^2 + 1) - \ln(n^2 + 3n + 2)$$

2. (13 points) In each case, find the sum of the series or show that the series diverges.

(a)
$$\sum_{n=0}^{\infty} \frac{5}{3^n}$$

(b)
$$\sum_{n=4}^{\infty} \left(\cos\left(\frac{\pi}{n}\right) - \cos\left(\frac{\pi}{n+1}\right) \right)$$

3. (25 points) Decide whether each series is convergent or divergent, and justify your answers using appropriate tests. You must give coherent arguments to receive credit.

(a)
$$\sum_{n=2}^{\infty} \frac{n^2 + 1}{n^3 - n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{7^{2n}}{\sqrt{n!}}$$

(c)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{3/2}}$$

4. (10 points) Let
$$a_n = \frac{n+7}{3n+5}$$
. Evaluate

(a)
$$\lim_{n \to \infty} a_n$$

(b)
$$\sum_{n=1}^{\infty} a_n$$

5. (15 points) Consider the series $S = \sum_{n=3}^{\infty} \frac{(-1)^{n-1}}{\ln(\ln n)}$.

(a) Show that the series converges conditionally. You must give a clear and complete argument, citing any appropriate tests.

(b) Let
$$S_N = \sum_{n=3}^{N} \frac{(-1)^{n-1}}{\ln(\ln n)}$$
. How large must N be to ensure that $|S - S_N| < \frac{1}{10}$?

6. (10 points) Decide whether each statement is true or false. If a statement is false, give an example to show why.

(a) If
$$\lim_{n \to \infty} a_n = 0$$
, then $\sum_{n=1}^{\infty} a_n$ converges.

(b) If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\sum_{n=1}^{\infty} |a_n|$ converges.

7. (15 points) Find the radius and interval of convergence for the power series

$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{\sqrt{n} \, 5^n}.$$

Justify your conclusions by citing appropriate tests.