MAT 162-Exam \#3-11/22/11

Name: \qquad
Show all work using correct mathematical notation. Calculators are not permitted.

1. (12 points) Find the limit of each of the following sequences.
(a) $a_{n}=\frac{e^{3 n}+4}{e^{3 n+1}+5}$
(b) $a_{n}=\ln \left(5 n^{2}+1\right)-\ln \left(n^{2}+3 n+2\right)$
2. (13 points) In each case, find the sum of the series or show that the series diverges.
(a) $\sum_{n=0}^{\infty} \frac{5}{3^{n}}$
(b) $\sum_{n=4}^{\infty}\left(\cos \left(\frac{\pi}{n}\right)-\cos \left(\frac{\pi}{n+1}\right)\right)$
3. (25 points) Decide whether each series is convergent or divergent, and justify your answers using appropriate tests. You must give coherent arguments to receive credit.
(a) $\sum_{n=2}^{\infty} \frac{n^{2}+1}{n^{3}-n}$
(b) $\sum_{n=1}^{\infty} \frac{7^{2 n}}{\sqrt{n!}}$
(c) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{3 / 2}}$
4. (10 points) Let $a_{n}=\frac{n+7}{3 n+5}$. Evaluate
(a) $\lim _{n \rightarrow \infty} a_{n}$
(b) $\sum_{n=1}^{\infty} a_{n}$
5. (15 points) Consider the series $S=\sum_{n=3}^{\infty} \frac{(-1)^{n-1}}{\ln (\ln n)}$.
(a) Show that the series converges conditionally. You must give a clear and complete argument, citing any appropriate tests.
(b) Let $S_{N}=\sum_{n=3}^{N} \frac{(-1)^{n-1}}{\ln (\ln n)}$. How large must N be to ensure that $\left|S-S_{N}\right|<\frac{1}{10}$?
6. (10 points) Decide whether each statement is true or false. If a statement is false, give an example to show why.
(a) If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(b) If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.
7. (15 points) Find the radius and interval of convergence for the power series

$$
\sum_{n=1}^{\infty} \frac{(x+2)^{n}}{\sqrt{n} 5^{n}}
$$

Justify your conclusions by citing appropriate tests.

