MAT 162-Exam \#3-11/18/15

Name: \qquad
Show all work using correct mathematical notation. Calculators are not permitted.

1. (15 points) Find the sum of each series, or demonstrate that it diverges.
(a) $\sum_{n=0}^{\infty} \frac{2^{3 n+1}}{3^{2 n+1}}$
(b) $\sum_{n=3}^{\infty}(\sqrt{n}-\sqrt{n+1})$
2. (10 points) Consider the sequence $a_{n}=\frac{3 n^{5}+2}{4 n^{5}+7}$. Evaluate
(a) $\lim _{n \rightarrow \infty} a_{n}$
(b) $\sum_{n=1}^{\infty} a_{n}$
3. (10 points) Find the limit of the sequence $a_{n}=n^{5 / n}$. Show your work using correct limit notation.
4. (15 points) Consider the series $S=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{3}}$.
(a) Determine whether the series converges absolutely, converges conditionally, or diverges. Justify your answer using appropriate tests.
(b) Write out the fourth partial sum, S_{4}.
(c) How large must N be to ensure that the error in approximating S by the N th partial sum S_{N} is at most 10^{-6} ?
5. (25 points) Decide whether each series converges or diverges, and justify your conclusions using appropriate tests. You must give coherent arguments to receive credit.
(a) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
(b) $\sum_{n=1}^{\infty} \frac{3+\sin n}{\sqrt{n^{5}+7 n+4}}$
(c) $\sum_{n=1}^{\infty} \frac{(3 n)!}{5^{2 n}(n!)^{3}}$
6. (10 points) Consider the series $S=\sum_{n=1}^{\infty} a_{n}$, whose N th partial sum is $S_{N}=\sum_{n=1}^{N} a_{n}$.
(a) Suppose that $S_{N}=5-\frac{1}{3^{N}}$ for all N. Find the sum of the infinite series S.
(b) Find a_{3}, the third term in the series.
7. (15 points) Find the radius and interval of convergence for the power series

$$
\sum_{n=1}^{\infty} \frac{2^{n}(x-5)^{n}}{\sqrt{n+1}}
$$

Justify your conclusions by citing appropriate tests.

