MAT 261—Exam \#1—9/18/14

Name: \qquad
Calculators are not permitted. Show all work using correct mathematical notation.

1. (10 points) Find parametric equations for the line containing the points $(1,0,2)$ and $(3,1,5)$.
2. (15 points) A particle moves in space with trajectory

$$
x(t)=\ln \left(t^{2}+1\right), \quad y(t)=\sin (\pi t), \quad z(t)=\frac{3}{t^{2}} .
$$

Find the unit tangent vector (that is, the unit vector tangent to the particle's path) at $t=1$.
3. (10 points) Convert the spherical coordinates $(\rho, \theta, \phi)=(4,3 \pi / 4, \pi / 6)$ into rectangular coordinates (x, y, z).
4. (15 points) Find the length of the curve $c(t)=\left(2 t^{3 / 2}+1,5 t+3\right)$ on the interval $0 \leqslant t \leqslant 1$.
5. (10 points) Find an equation for the plane passing through the origin and containing the vectors $\mathbf{v}=3 \mathbf{i}+\mathbf{j}+\mathbf{k}$ and $\mathbf{w}=2 \mathbf{i}+\mathbf{j}+5 \mathbf{k}$.
6. (15 points) Consider the points $P(0,1), Q(1,3)$, and $R(1,5)$ in \mathbb{R}^{2}.
(a) Find the angle between $\overrightarrow{P Q}$ and $\overrightarrow{P R}$.
(b) Find the area of the triangle with vertices P, Q, and R.
7. (15 points) Consider the plane $x+2 y+3 z=4$.
(a) Find a unit vector perpendicular to the plane.
(b) Find the point at which the line $\mathbf{r}(t)=\langle 2+3 t, 1+t, 4-t\rangle$ intersects the plane.
8. (10 points) Find a formula for the speed of a particle moving along the helix

$$
\mathbf{r}(t)=\langle k t, A \cos \omega t, A \sin \omega t\rangle .
$$

Your formula should involve the constants k, A, and ω and should be given in simplest possible form.

