MAT 261—Exam #2—10/16/14

Name: _____

Calculators are not permitted. Show all of your work using correct mathematical notation.

1. (10 points) Find and sketch the domain of the function $f(x,y) = \sqrt{y} + \sqrt{4 - x^2 - y^2}$.

2. (15 points) Let
$$f(x, y, z) = \frac{x^4 \ln z}{y^5} + e^{xy + yz^3} \tan(z^7)$$
. Calculate f_x , f_y , and f_z .

3. (10 points) Let $f(x,y) = \frac{x^2y}{(x+y)^3}$. Show that $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

4. (15 points) Consider the function $f(x, y, z) = \frac{1}{4}x^2y^3z^5$.

(a) Find the directional derivative of f at the point (1, 2, 1) in the direction of $\mathbf{v} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$.

(b) Find the maximum value of the directional derivative of f at the point (1, 2, 1).

(c) Find the equation of the tangent plane to the level surface f(x, y, z) = 2 at the point (1, 2, 1).

5. (10 points) Find the linearization of the function $f(x, y) = x^2 \cos y$ at the point $(3, \pi/3)$.

6. (15 points) Let $w = \frac{4}{2x+3y}$, where $x = r \cos \theta$ and $y = r \sin \theta$. Calculate $\partial w / \partial \theta$ at the point $(r, \theta) = (2, 3\pi/4)$,

7. (13 points) Find the coordinates of all local maxima, local minima, and saddle points of the function $f(x, y) = 2x^2 + 3xy + 4y^2 - 5x + 2y$.

8. (12 points) Use Lagrange multipliers to find the maximum and minimum values of the function f(x, y) = 3x - y on the circle $x^2 + y^2 = 40$.