MAT 261—Exam \#2—10/16/14

Name:
Calculators are not permitted. Show all of your work using correct mathematical notation.

1. (10 points) Find and sketch the domain of the function $f(x, y)=\sqrt{y}+\sqrt{4-x^{2}-y^{2}}$.
2. (15 points) Let $f(x, y, z)=\frac{x^{4} \ln z}{y^{5}}+e^{x y+y z^{3}} \tan \left(z^{7}\right)$. Calculate f_{x}, f_{y}, and f_{z}.
3. (10 points) Let $f(x, y)=\frac{x^{2} y}{(x+y)^{3}}$. Show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
4. (15 points) Consider the function $f(x, y, z)=\frac{1}{4} x^{2} y^{3} z^{5}$.
(a) Find the directional derivative of f at the point $(1,2,1)$ in the direction of $\mathbf{v}=$ $2 \mathbf{i}+\mathbf{j}-\mathbf{k}$.
(b) Find the maximum value of the directional derivative of f at the point $(1,2,1)$.
(c) Find the equation of the tangent plane to the level surface $f(x, y, z)=2$ at the point $(1,2,1)$.
5. (10 points) Find the linearization of the function $f(x, y)=x^{2} \cos y$ at the point $(3, \pi / 3)$.
6. (15 points) Let $w=\frac{4}{2 x+3 y}$, where $x=r \cos \theta$ and $y=r \sin \theta$. Calculate $\partial w / \partial \theta$ at the point $(r, \theta)=(2,3 \pi / 4)$,
7. (13 points) Find the coordinates of all local maxima, local minima, and saddle points of the function $f(x, y)=2 x^{2}+3 x y+4 y^{2}-5 x+2 y$.
8. (12 points) Use Lagrange multipliers to find the maximum and minimum values of the function $f(x, y)=3 x-y$ on the circle $x^{2}+y^{2}=40$.
