## MAT 261-Exam \#3—11/13/14

Name: $\qquad$
Calculators are not permitted. Show all of your work using correct mathematical notation.

1. (15 points) Find the average value of the function $f(x, y)=x+\sqrt{y}$ over the triangle bounded by the lines $y=0, x=1$, and $y=x$.
2. (10 points) Consider the integral $\int_{0}^{2} \int_{1}^{e^{x}} f(x, y) d y d x$. Sketch the domain of integration, and set up an equivalent integral with the order of integration reversed.
3. (10 points) Set up (but do not evaluate) an integral that gives the volume of a solid whose base is the region in the $x y$-plane between the curves $y=x^{2}$ and $x=y^{2}$ and whose upper boundary is the elliptical paraboloid $z=9-x^{2}-2 y^{2}$.
4. (15 points) Evaluate the integral $\int_{0}^{1} \int_{\sqrt{3} x}^{\sqrt{4-x^{2}}}\left(x^{4} y+x^{2} y^{3}\right) d y d x$ by changing to polar coordinates. Include a sketch of the domain.
5. (15 points) Evaluate the triple integral $\int_{0}^{1} \int_{0}^{2} \int_{0}^{1} \frac{y z^{4} \sin (\pi x)}{3+y^{2}} d z d y d x$.
6. (15 points) Consider the integral $\iint_{\mathcal{D}}(x+y) d A$, where $\mathcal{D}$ is the parallelogram in the $x y$-plane spanned by the vectors $\langle 5,2\rangle$ and $\langle 1,3\rangle$. Use the transformation

$$
G(u, v)=(5 u+v, 2 u+3 v)
$$

to evaluate the integral.
7. (20 points) An object occupying the region defined by the inequalities $x^{2}+y^{2}+z^{2} \leqslant 18$ and $z \geqslant 3$ has mass density $\delta(x, y, z)=5 / z \mathrm{~kg}$ per cubic unit. Set up (but do not evaluate) integrals that give the mass of the object:
(a) using cylindrical coordinates
(b) using spherical coordinates

