MAT 261-Exam \#1A-2/18/14

Name: \qquad
Calculators are not permitted. Show all work using correct mathematical notation.

1. (10 points) Find the slope of the tangent line to the curve $c(t)=\left(4 \ln t, t^{3}+5\right)$ at the point where $t=2$. Give your answer in simplest possible form.
2. (15 points) A particle moves in space with trajectory

$$
x(t)=e^{3 t}, \quad y(t)=t^{2} \sin \pi t, \quad z(t)=\frac{4}{(t+1)^{2}} .
$$

Find the speed of the particle at $t=1$. Give your answer in simplest possible form.
3. (13 points) Find the angle between the vectors $\mathbf{v}=\mathbf{i}+3 \mathbf{j}+\mathbf{k}$ and $\mathbf{w}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$. You may express your answer in terms of inverse trigonometric functions.
4. (12 points) Find the area of the parallelogram determined by the vectors $\mathbf{v}=3 \mathbf{i}+\mathbf{j}+\mathbf{k}$ and $\mathbf{w}=\mathbf{i}+\mathbf{j}+2 \mathbf{k}$.
5. (10 points) Find parametric equations for the line that is perpendicular to the plane $x+2 y+4 z=8$ and passes through the point $(7,5,3)$.
6. (15 points) Find a unit vector perpendicular to the plane containing the points $P(2,-1,0), Q(1,0,1)$, and $R(0,3,-1)$.
7. (10 points) Convert the spherical coordinates $(\rho, \theta, \phi)=(\sqrt{2}, \pi / 3, \pi / 4)$ into rectangular coordinates (x, y, z).
8. (15 points) Find the length of the helix defined by

$$
\mathbf{r}(t)=(\cos 5 t) \mathbf{i}+(\sin 5 t) \mathbf{j}+2 t^{3 / 2} \mathbf{k} \quad(0 \leqslant t \leqslant 1)
$$

