MAT 261—Exam \#2A-3/13/14

Name: \qquad
Calculators are not permitted. Show all of your work using correct mathematical notation.

1. (25 points) Consider the function $f(x, y)=\ln \left(x^{2}-y\right)$.
(a) Sketch the domain of f.
(b) Find the equation of the level curve of f passing through the point $(2,3)$, and sketch its graph.
(c) Find the average rate of change of f with respect to y from $(2,1)$ to $(2,3)$.
(d) Find the gradient of f at the point $(2,1)$.
(e) Find the instantaneous rate of change of f at the point $(2,1)$ in the direction \mathbf{j}.
2. (15 points) Let $f(x, y, z)=z^{3} \cos \left(x y^{2}\right)+e^{x y z} \tan z$. Calculate f_{x}, f_{y}, and f_{z}.
3. (10 points) Find the linearization of the function $f(x, y)=\sqrt{x^{2}+y^{4}}$ at the point $(3,2)$.
4. (30 points) Consider the function $f(x, y)=x^{2}+y^{2}-x y+x$.
(a) Find the maximum value of the directional derivative of f at the point $(3,5)$.
(b) Find the directional derivative of f at the point $(3,5)$ in the direction of $\mathbf{v}=3 \mathbf{i}-\mathbf{j}$.
(c) Find the coordinates of all local maxima, local minima, and saddle points of f.
(d) If $x=\sin 2 t$ and $y=2 e^{3 t}$, calculate $\frac{d f}{d t}$ when $t=0$.
5. (10 points) Let $f(x, y)=\frac{x^{2} y}{x^{4}+y^{2}}$. Show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist. Hint: Consider a parabolic path of approach.
6. (10 points) Use Lagrange multipliers to find the point on the line $4 x-6 y=25$ where the function $f(x, y)=x^{2}+2 y^{2}$ has its minimum value.
