
MULTIPLE EXPONENTIAL SUMS OVER SMOOTH NUMBERS
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Abstract. We obtain estimates for mean values of double exponential sums over smooth
numbers by developing a suitable version of the Vaughan-Wooley iterative method. These
estimates are then used within the fabric of the Hardy-Littlewood method to provide a
lower bound for the density of rational lines on the hypersurface defined by an additive
equation when the dimension is sufficiently large in terms of the degree. We also consider
applications to a two-dimensional generalization of Waring’s problem.

1. Introduction

Let F (x) be a form of degree k in s variables, with integer coefficients. In 1945, Brauer [4]
demonstrated the existence of an m-dimensional linear space on the hypersurface F (x) = 0
over some solvable extension of Q, provided that s is sufficiently large in terms of k and
m, and in 1957 Birch [3] obtained the same result over Q for odd k. Unfortunately, the
elementary methods of Brauer and Birch do not yield any reasonable bounds on the number
of variables required, although explicit calculations have been done more recently for small
values of k by Lewis and Schulze-Pillot [8] and Wooley [15], [16]. Moreover, up to this point
no estimates have been provided for the density of rational lines on a given hypersurface.

In this paper, we obtain an explicit upper bound for the number of variables required to
guarantee the expected density of lines on the hypersurface F (x) = 0 in the case when F
is an additive form of degree k. Our approach is via the Hardy-Littlewood method, and we
will be required to develop considerable analytic machinery in order to get started. The
method depends fundamentally on sharp estimates for certain multiple exponential sums
over smooth numbers, which we obtain by extending the ideas of Vaughan [11] and Wooley
[13], [17]. Such estimates are of interest in their own right and may also be applied, for
example, to the two-dimensional generalization of Waring’s problem proposed by Arkhipov
and Karatsuba [1], which we consider in Section 9.

When P and R are positive integers, write

A(P,R) = {n ∈ [1, P ] ∩ Z : p|n, p prime ⇒ p ≤ R}
for the set of R-smooth numbers up to P , and define the exponential sum

f(α;P,R) =
∑

x,y∈A(P,R)

e(α0x
k + α1x

k−1y + · · ·+ αky
k). (1.1)

Further, define the mean value

Ss(P,R) =

∫
Tk+1

|f(α;P,R)|2sdα,
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and observe that Ss(P,R) is the number of solutions of the system of equations

s∑
m=1

(xk−im yim − x̃k−im ỹim) = 0 (0 ≤ i ≤ k) (1.2)

with

xm, ym, x̃m, ỹm ∈ A(P,R) (1 ≤ m ≤ s).

The following theorem provides a simple upper bound for Ss(P,R).

Theorem 1. Let k ≥ 2 be a positive integer, and put r =
[
k+1
2

]
. Further, write

s1 = k2

(
1− 1

2k

)−1

+ r,

and let s be a positive integer with s ≥ s1. Then for any ε > 0 there exists η = η(s, k, ε)
such that

Ss(P,R) � P 4s−k(k+1)+∆s+ε, (1.3)

where R ≤ P η and

∆s = k(k + 1)

(
1− 1

2k

)(s−s1)/r
.

For example, if s ∼ 2k2(log k + log log k), then we have ∆s � k2e−s/k
2 � (log k)−2.

Whenever ∆s has the property that, for every ε > 0, there exists η = η(ε) such that (1.3)
holds whenever R ≤ P η, we say that ∆s is an admissible exponent.

We note for comparison that Arkhipov, Karatsuba, and Chubarikov [2] have obtained
estimates for the number of solutions of the “complete” system

s∑
m=1

(ximy
j
m − x̃imỹ

j
m) = 0 (0 ≤ i, j ≤ k)

with

1 ≤ xm, ym, x̃m, ỹm ≤ P (1 ≤ m ≤ s)

which lead, via a standard argument, to admissible exponents for (1.2) behaving roughly

like k3e−s/2k
3
, so that one must take s ≥ 6k3 log k in most applications.

We also remark that, when R = P η, an elementary argument yields the lower bound

Ss(P,R) � P 2s + P 4s−k(k+1) (1.4)

and that a weak upper bound of the form

Ss(P,R) � P 4s− 1
2
k(k+1)+∆′

s+ε,

follows on fixing y, ỹ and applying the results of [17] to the equations in x, x̃.
In Section 6, we obtain the following sharper result as a consequence of repeated efficient

differencing.
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Theorem 2. Write r =
[
k+1
2

]
, and put

s0 = k(k + 1) and s1 = 4
3
rk(log(4rk)− 2 log log k).

Further, define

∆s =

{
4rke2−3(s−s0)/4rk, when 1 ≤ s ≤ s1,

e4(log k)2
(
1− 1

2k

)(s−s1)/r , when s > s1.

Then there exists a constant K such that the exponent ∆s is admissible whenever k ≥ K.

Notice that the admissible exponents one obtains from Theorem 2 decay in most cases
roughly like k2e−3s/2k2

, whereas those obtained from Theorem 1 decay like k2e−s/k
2
.

The mean value estimates of Theorems 1 and 2 may be transformed into Weyl estimates
by using the large sieve inequality in a standard way. Thus in Section 7 we will prove the
following result.

Theorem 3. For µ > 0, define mµ to be the set of α ∈ Rk+1 such that whenever ai ∈ Z and
q ∈ N satisfy (a0, . . . , ak, q) = 1 and |qαi− ai| ≤ P µ−kRk (0 ≤ i ≤ k) one has q > P µRk+1.
Suppose that 0 < λ ≤ 1

2
and that ∆s denotes an admissible exponent. Then given ε > 0

there exists η = η(ε, k) such that whenever R ≤ P η one has

sup
�∈mλ(k+1)

|f(α;P,R)| � P 2−σ(λ)+ε,

where

σ(λ) = max
2s≥k+1

λ− (1− λ)∆s

2s
. (1.5)

In our applications involving the circle method, we will find it useful to take λ = 1
2(k+1)

.

After performing a simple optimization, one obtains the following simplification.

Corollary 3.1. Given ε > 0, there exists η = η(ε, k) such that whenever R ≤ P η one has

sup
�∈m1/2

|f(α;P,R)| � P 2−σ1(k)+ε,

where

σ1(k)
−1 ∼ 28

3
k3 log k

as k →∞.

We now consider the multidimensional analogue of Waring’s problem discussed in [1].
Let Ws(n, P ) denote the number of solutions of the system of equations

xk−j1 yj1 + · · ·+ xk−js yjs = nj (0 ≤ j ≤ k) (1.6)

with xi, yi ∈ [1, P ] ∩ Z. Obviously, Ws(n, P ) = 0 if the relative sizes of the nj are incom-
patible, since then the equations (1.6) will be insoluble even over the positive reals. Thus
we will need to impose some conditions in order to proceed.

Theorem 4. Suppose that

s ≥ 14
3
k2 log k + 10

3
k2 log log k +O(k2),
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and fix real numbers µ0, . . . , µk with the property that the system

ηk−j1 ξj1 + · · ·+ ηk−js ξjs = µj (0 ≤ j ≤ k) (1.7)

has a non-singular real solution with 0 < ηi, ξi < 1. Suppose also that the system (1.6)
has a non-singular p-adic solution for all primes p. Then there exist positive numbers
P0 = P0(s, k,µ) and δ = δ(s, k,µ) such that, whenever P > P0 and

|nj − P kµj| < δP k (0 ≤ j ≤ k), (1.8)

one has

Ws(n, P ) � P 2s−k(k+1).

We remark that the p-adic solubility condition imposed in the theorem in fact need only
be checked for finitely many primes p, as we will see in Section 9 that primes sufficiently
large in terms of k may be dealt with unconditionally using exponential sums.

Theorem 4 leads, via the binomial theorem, to the conclusion that suitable polynomials
of degree k with integer coefficients may be represented as sums of kth powers of linear
polynomials. That is, we seek to write

p(t) = (x1t+ y1)
k + · · ·+ (xst+ ys)

k (1.9)

with xi, yi ∈ N.
We will say that the polynomial

p(t) =
k∑
j=0

(
k

j

)
njt

j (1.10)

is locally representable if

(1) there exist real numbers P, δ, and µ0, . . . , µk such that (1.8) holds and such that the
system (1.7) has a non-singular real solution with 0 < ηi, ξi < 1, and

(2) the system (1.6) has a non-singular p-adic solution for all primes p.

Now let G∗
1(k) denote the least integer s such that, whenever the polynomial p(t) given

by (1.10) is locally representable and n0, . . . , nk are sufficiently large, one has the global
representation (1.9) for some natural numbers x1, . . . , xs and y1, . . . , ys.

From Theorem 4 we immediately obtain an upper bound for G∗
1(k).

Corollary 4.1. One has

G∗
1(k) ≤ 14

3
k2 log k + 10

3
k2 log log k +O(k2).

We note that Arkhipov and Karatsuba [1] have previously outlined a program for obtain-
ing bounds of the form G∗

1(k) ≤ Ck2 log k using the theory of multiple exponential sums
over a complete interval developed in [2]. Corollary 4.1 thus gives an explicit asymptotic
version of this result, showing that one may take C ∼ 14/3.

It is worth noting that the analogous problem over the complex numbers has been con-
sidered recently by algebraic geometers (see for example [7], [9]). By exploiting a surpris-
ing connection with the theory of partial differential operators, one finds that precisely
s =

⌈
k+1
2

⌉
terms are required to guarantee a representation of the shape (1.9) for arbitrary

polynomials of degree k over C. In fact, similar results are known when p(t) is replaced by
a form in several variables.



MULTIPLE EXPONENTIAL SUMS OVER SMOOTH NUMBERS 5

Finally, we return to the problem posed at the beginning of the paper, namely, counting
rational lines on the hypersurface defined by an additive equation. Let c1, . . . , cs be nonzero
integers, and write Ns(P ) for the number of solutions of the polynomial equation

c1(x1t+ y1)
k + · · ·+ cs(xst+ ys)

k = 0 (1.11)

with xi, yi ∈ [−P, P ] ∩ Z. Equivalently, by the binomial theorem, Ns(P ) is the number of
solutions of the system of equations

c1x
k−j
1 yj1 + · · ·+ csx

k−j
s yjs = 0 (0 ≤ j ≤ k) (1.12)

with xi, yi ∈ [−P, P ] ∩ Z.

Theorem 5. Suppose that

s ≥ 14
3
k2 log k + 10

3
k2 log log k +O(k2),

and that the system of equations (1.12) has a non-singular real solution and a non-singular
p-adic solution for all primes p. Then for P sufficiently large one has

Ns(P ) � P 2s−k(k+1).

As in Theorem 4, the p-adic solubility hypothesis here need only be verified for small
primes, as the primes p > p0(k) are easily dealt with by an analytic argument.

Given a line ` : xt+ y, we define the height of ` by h(`) = max(|xi|, |yi|). To obtain the
density result mentioned in the opening, we seek a lower bound for the number of lines ` on
our hypersurface that satisfy h(`) ≤ P . Among the solutions counted by Ns(P ), we may
of course have several that correspond to the same line, so Theorem 5 does not directly
yield such a lower bound. In Section 10, however, we will actually derive the estimate of
Theorem 5 when the variables are restricted to lie in dyadic-type intervals and then show
that in this situation the number of solutions of (1.12) corresponding to any particular line
is at most O(1). Thus we will prove the following theorem.

Theorem 6. Let Ls(P ) denote the number of distinct rational lines ` lying on the hyper-
surface

c1z
k
1 + · · ·+ csz

k
s = 0 (1.13)

and satisfying h(`) ≤ P . Then, under the hypotheses of Theorem 5, one has

Ls(P ) � P 2s−k(k+1).

We note that, when s is large in terms of k, the theory of a single additive equation (see
for example [12]) shows that the hypersurface defined by (1.13) contains “trivial” lines,
corresponding to the case where either xi = 0 or yi = 0 for each i in (1.11). By a trivial
estimate, however, the number of such lines is O(P s). Hence Theorem 6 shows that in this
situation most of the points on (1.13) that lie on lines in fact lie on non-trivial lines.

For a hypersurface defined by an additive cubic equation, the author’s forthcoming work
[10] shows that the estimate of Theorem 6 holds unconditionally whenever s ≥ 57.

The author wishes to thank Professor Trevor Wooley for suggesting these problems and
for providing substantial advice and encouragement during the writing of this paper. The
author also acknowledges the important comments of the referee.
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2. Preliminary Lemmata

Before embarking on the proofs of our mean value estimates, we need to make some
preliminary observations. We start by showing that solutions of (1.2) in which some xj and
yj or some x̃j and ỹj have a large common factor can effectively be ignored. When γ > 0,
let Ss(P,R; γ) be the number of solutions of (1.2) with (xj , yj) ≤ P γ and (x̃j , ỹj) ≤ P γ for
all j.

Lemma 2.1. For every γ > 0, one has Ss(P,R) � P 2s+ε + Ss(P,R; γ).

Proof. Write S ′s(P,R; γ) for the number of solutions of (1.2) with (xj , yj) > P γ or (x̃j , ỹj) >
P γ for some j, so that Ss(P,R) = Ss(P,R; γ) + S ′s(P,R; γ). Then we have

S ′s(P,R; γ) =
∑
d>P γ

∫
Tk+1

f(dkα;P/d,R)f(−α;P,R)|f(α;P,R)|2s−2 dα. (2.1)

Now suppose that S ′s(P,R; γ) ≥ Ss(P,R; γ), so that Ss(P,R) ≤ 2S ′s(P,R; γ), and let

λs = inf{λ : Ss(P,R) � P λ}.
If λs = 2s, then we are done, so in view of (1.4) we may assume that λs > 2s. By applying
Hölder’s inequality to (2.1), we obtain

Ss(P,R) �
∑
d>P γ

(∫
Tk+1

|f(dkα;P/d,R)|2s dα
)1/2s(∫

Tk+1

|f(α;P,R)|2s dα
)1−1/2s

,

from which we deduce that

Ss(P,R) �
(∑
d>P γ

Ss(P/d,R)1/2s

)2s

� P λs+γ(2s−λs)+ε,

for all ε > 0, since λs > 2s. This provides a contradiction for ε sufficiently small, so in fact
we have S ′s(P,R; γ) < Ss(P,R; γ), and the conclusion of the lemma follows.

We next record an estimate for the number of solutions of an associated system of
congruences. When f1, . . . , ft are polynomials in Z[x1, . . . , xt], write Bt(q, p;u; f) for the
set of solutions modulo qkpk of the simultaneous congruences

fj(x1, . . . , xt) ≡ uj (mod qk−j+1pj−1) (1 ≤ j ≤ t) (2.2)

with (Jt(f ;x), pq) = 1, where

Jt(f ;x) = det

(
∂fi
∂xj

(x)

)
1≤i,j≤t

. (2.3)

Lemma 2.2. Suppose that f1, . . . , f2r ∈ Z[x1, . . . , x2r] have degrees bounded in terms of k.
Then whenever 2r ≤ k + 1 we have

card(B2r(q, p;u; f)) �ε,k (pq)r(2r−1)+ε(q, p)2r(2k−2r+1).

Proof. Write q̃ = q/(q, p) and p̃ = p/(q, p), so that (q̃, p̃) = 1. Then by considering the
jth congruence in (2.2) modulo q̃ k−j+1, we obtain from Lemma 2.2 of Wooley [17] that
the number of solutions modulo q̃ k is Oε,k(q̃

r(2r−1)+ε). Similarly, the number of solutions
modulo p̃ k is Oε,k(p̃

r(2r−1)+ε). Hence by the Chinese Remainder Theorem the number of
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solutions modulo q̃ kp̃ k is Oε,k((p̃q̃)
r(2r−1)+ε). Trivially, each of these solutions lifts in at

most (q, p)4kr ways to Z/(qkpk), and the lemma follows immediately.

We now develop some notation for analyzing real singular solutions of systems such as
(1.2). Let ψ1, . . . , ψ2r be nontrivial polynomials in Z[x, y] of total degree at most k. When
I,J ⊂ {1, 2, . . . , 2r} with card(J ) = 2 card(I) and z,w ∈ Z2r, define the Jacobian

J(I,J ;ψ) = det

(
∂ψj

∂zi
(zi, wi)

∂ψj

∂wi
(zi, wi)

)
i∈I,j∈J

.

Write Jd = {1, . . . , d}, and let I∗d denote the set of all subsets of J2r of size d. We will
call the 4r-tuple of integers (z1, w1, . . . , z2r, w2r) highly singular for ψ if J(I,J2r;ψ) = 0
for each I ∈ I∗r . Also write

di,j(z, w;ψ) = det

(
∂ψi

∂z
(z, w)

∂ψj

∂z
(z, w)

∂ψi

∂w
(z, w)

∂ψj

∂w
(z, w)

)
.

Let Sr(P ;ψ) denote the set of all integral 4r-tuples (z1, w1, . . . , z2r, w2r) with 1 ≤ zi, wi ≤
P which are highly singular for ψ.

Lemma 2.3. Suppose that ψ1, . . . , ψ2r satisfy the condition that d1,2 is non-trivial and
degw(di,j) < degw(di′,j′) whenever i+ j < i′ + j′. Then we have

card(Sr(P ;ψ)) �k P
3r−1.

Proof. Let T0(P ;ψ) denote the set of integral 4r-tuples (z,w) with 1 ≤ zi, wi ≤ P for
i = 1, . . . , 2r and

d1,2(zi, wi;ψ) = 0 (2.4)

for all i. For a 4r-tuple counted by T0(P ;ψ) and a given i, there are at most O(P ) choices
for zi and wi satisfying (2.4), since we have assumed that d1,2 is non-trivial, and it follows
that card(T0(P ;ψ)) � P 2r.

Now for 1 ≤ d ≤ r − 1, we say that (z,w) ∈ Td(P ;ψ) if

J(I,J2d;ψ) 6= 0 (2.5)

for some I ∈ I∗d but

J(I ∪ {i},J2d+2;ψ) = 0 (2.6)

for all i ∈ J2r \ I. Consider a 4r-tuple counted by Td(P ;ψ) for some 1 ≤ d ≤ r − 1.
There are O(1) choices for I and O(P 2d) choices for the zi and wi with i ∈ I. Now we fix
i ∈ J2r \I and expand the determinant in (2.6) using 2×2 blocks along the rows containing
zi and wi. Then on using (2.5) together with our hypothesis on ψ, we see that the relation
(2.6) is a non-trivial polynomial equation in the variables zi and wi and hence has O(P )
solutions. Thus we have

card(Td(P ;ψ)) � P 2d+(2r−d) = P 2r+d

and hence

card(Sr(P ;ψ)) ≤
r−1∑
d=0

card(Td(P ;ψ)) � P 3r−1,

as desired.
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Finally, we recall an estimate of Wooley [14] for the number of integers in an interval

with a given square-free kernel. We adopt the notation s0(N) =
∏
p|N

p.

Lemma 2.4. Suppose that L is a positive real number and r is a positive integer with
log r � logL. Then for each ε > 0, one has

card{y ≤ L : s0(y) = s0(r)} �ε L
ε.

Proof. This is Lemma 2.1 of Wooley [14].

3. The Fundamental Lemma

For 0 ≤ i ≤ k, let ψi(z, w; c) be polynomials with integer coefficients in the variables
z, w, c1, . . . , cu and satisfying the conditions of Lemma 2.3. Further, suppose that Ci and
C ′
i satisfy 1 ≤ C ′

i ≤ Ci � P , write

C̃ =
u∏
i=1

Ci,

and let Di(c) be polynomials with total degrees bounded in terms of k such that Di(c) 6= 0
for C ′

i ≤ ci ≤ Ci. We let ε, η, and γ denote small positive numbers, whose values may
change from statement to statement. Generally, η and γ will be chosen sufficiently small in
terms of ε, and the implicit constants in our analysis may depend at most on ε, η, γ, s, and
k. Since our methods will involve only a finite number of steps, all implicit constants that
arise remain under control, and the values assumed by η and γ throughout the arguments
remain uniformly bounded away from zero.

When r ≤
[
k+1
2

]
, let Ss,r(P,Q,R;ψ) = Ss,r(P,Q,R;ψ;C,D; γ) be the number of solu-

tions of the system
r∑

n=1

ηn(ψi(zn, wn; c)− ψi(z̃n, w̃n; c))

+Di(c)
s∑

m=1

(xk−im yim − x̃k−im ỹim) = 0 (0 ≤ i ≤ k)

(3.1)

with

xm, ym, x̃m, ỹm ∈ A(Q,R) (1 ≤ m ≤ s), (3.2)

(xm, ym) ≤ P γ and (x̃m, ỹm) ≤ P γ (1 ≤ m ≤ s), (3.3)

1 ≤ zn, wn, z̃n, w̃n ≤ P and ηn ∈ {±1} (1 ≤ n ≤ r), (3.4)

and

C ′
j ≤ cj ≤ Cj (1 ≤ j ≤ u). (3.5)

Further, write S̃s,r(P,Q,R;ψ) for the number of solutions of (3.1) with (3.2), (3.3), (3.4),
(3.5), and

J2r(z,w; c) 6= 0 and J2r(z̃, w̃; c) 6= 0, (3.6)



MULTIPLE EXPONENTIAL SUMS OVER SMOOTH NUMBERS 9

where (recalling the notation of the previous section) we have put

J2r(z,w; c) = J(Jr,J2r,ψ(z,w; c)).

Finally, let Ts,r(P,Q,R, θ;ψ) denote the number of solutions of
r∑

n=1

ηn(ψi(zn, wn; c)− ψi(z̃n, w̃n; c))

+Di(c)qk−ipi
s∑

m=1

(uk−im vim − ũk−im ṽim) = 0 (0 ≤ i ≤ k)

(3.7)

with (3.4), (3.5),

P θ < p, q ≤ P θR and (q, p) ≤ P γ, (3.8)

um, vm, ũm, ṽm ∈ A(QP−θ, R) (1 ≤ m ≤ s), (3.9)

(um, vm) ≤ P γ and (ũm, ṽm) ≤ P γ (1 ≤ m ≤ s), (3.10)

and

(J2r(z,w; c), pq) = (J2r(z̃, w̃; c), pq) = 1. (3.11)

Lemma 3.1. Given ε > 0, there exists a positive number η = η(ε, s, k) such that whenever
R ≤ P η one has

Ss,r(P,Q,R;ψ) � C̃P 3r−1Ss(Q,R) + C̃Q3sP 2r+sθ+ε + P (4s−2)θ+εTs,r(P,Q,R, θ;ψ).

Proof. Let S1 denote the number of solutions counted by Ss,r(P,Q,R;ψ) such that (z,w, z̃, w̃)
is highly singular for ψ, and let S2 denote the number of solutions such that (z,w, z̃, w̃) is
not highly singular for ψ, so that Ss,r(P,Q,R;ψ) = S1 + S2.

(i) Suppose that S1 ≥ S2, so that Ss,r(P,Q,R;ψ) ≤ 2S1. By Lemma 2.3, we see that
there are O(P 3r−1) permissible choices for z,w, z̃, and w̃. Now let

fc(α;Q,R) =
∑

x,y∈A(Q,R)
(x,y)≤P γ

e

(
k∑
i=0

αiDi(c)xk−iyi
)
.

For a fixed choice of z,w, z̃, w̃, c, and η, the number of possible choices for x,y, x̃, and ỹ
is at most ∫

Tk+1

|fc(α;Q,R)|2sdα ≤ Ss(Q,R),

so we have S1 � P 3r−1C̃Ss(Q,R), which establishes the lemma in this case.

(ii) Suppose that S2 ≥ S1, so that Ss,r(P,Q,R;ψ) ≤ 2S2. By rearranging variables,
we see that Ss,r(P,Q,R;ψ) � S3, where S3 denotes the number of solutions of (3.1) with
(3.2), (3.3), (3.4), and (3.5), and J2r(z,w; c) 6= 0. Then by using the Cauchy-Schwarz
inequality as in the corresponding argument of Wooley [17] to manipulate the underlying
mean values, we see that

Ss,r(P,Q,R;ψ) � S4,
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where S4 represents the number of solutions of (3.1) satisfying (3.2), (3.3), (3.4), (3.5),
J2r(z,w; c) 6= 0, and J2r(z̃, w̃; c) 6= 0.

We now further classify the solutions counted by S4. Write x D(L) y if there is some
divisor d of x with d ≤ L such that x/d has all of its prime divisors amongst those of y.
Let S5 denote the number of solutions counted by S4 for which

xj D(P θ) J2r(z,w; c) or x̃j D(P θ) J2r(z̃, w̃; c) (3.12)

or

yj D(P θ) J2r(z,w; c) or ỹj D(P θ) J2r(z̃, w̃; c) (3.13)

for some j, and let S6 denote the number of solutions for which neither (3.12) nor (3.13)
holds for any j. Then we have

Ss,r(P,Q,R;ψ) � S5 + S6,

and we divide into further cases.

(iii) Suppose that S5 ≥ S6, and further suppose that (3.12) holds. Write

S(z,w; c) = {x ∈ A(Q,R) : x D(P θ) J2r(z,w; c)},
and let

H̃c,�(α;P,Q,R) =
∑
z,w

J2r(z,w;c)6=0

∑
x∈S(z,w;c)
y∈A(Q,R)
(x,y)≤P γ

e(Ξ(α; x, y, z,w; c,η)),

where

Ξ(α; x, y, z,w; c,η) =

k∑
i=0

αi(Di(c)xk−iyi + η1ψi(z1, w1; c) + · · ·+ ηrψi(zr, wr; c)).

Then

S5 �
∑
c,�,!

∫
Tk+1

|H̃c,�(α;P,Q,R)F̃ ∗
c,!(α;P )fc(α;Q,R)2s−1| dα,

where

F̃ ∗
c,!(α;P ) =

∑
z,w

J2r(z,w;c)6=0

e(Ξ(α; 0, 0, z,w; c,ω)).

By using the Cauchy-Schwarz inequality and considering the underlying Diophantine equa-
tions as in [17], we deduce that

Ss,r(P,Q,R;ψ) �
∑
g,h,c

V (g, h; c),

where V (g, h; c) denotes the number of solutions of the system

r∑
n=1

ηn(ψi(zn, wn; c)− ψi(z̃n, w̃n; c)) +Di(c)

s−1∑
m=1

(xk−im yim − x̃k−im ỹim)

= Di(c)((ex̃)k−iỹi − (dx)k−iyi) (0 ≤ i ≤ k)
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with (3.2), (3.3), (3.4), (3.5), and

J2r(z,w; c) 6= 0, J2r(z̃, w̃; c) 6= 0, g|J2r(z,w; c), h|J2r(z̃, w̃; c),

1 ≤ d, e ≤ P θ, x ≤ Q/d, x̃ ≤ Q/e, y, ỹ ≤ Q, s0(x) = g, s0(x̃) = h.

Write

Gc,�,g(α;P ) =
∑
z,w

g|J2r(z,w;c)6=0

e(Ξ(α; 0, 0, z,w; c,η))

and

Gc,�(α) =
∑
g≤Q

Gc,�,g(α;P )
∑
d≤P θ

∑
x≤Q/d
s0(x)=g
y≤Q

e

(
k∑
i=0

αiDi(c)(dx)k−iyi
)
.

Then

Ss,r(P,Q,R;ψ) �
∑
c,�

∫
Tk+1

|Gc,�(α)2fc(α;Q,R)2s−2| dα. (3.14)

By Cauchy’s inequality, we have

|Gc,�(α)|2 ≤ H1,c,�(α)H2,c(α), (3.15)

where

H1,c,�(α) =
∑
g≤Q

|Gc,�,g(α;P )|2

and

H2,c(α) =
∑
g≤Q

∣∣∣∣∣∣∣∣
∑
d≤P θ

∑
x≤Q/d
s0(x)=g

∑
y≤Q

e

(
k∑
i=0

αiDi(c)(dx)k−iyi
)∣∣∣∣∣∣∣∣

2

.

Now by interchanging the order of summation and using Cauchy’s inequality together with
Lemma 2.4 as in [17], we obtain

H2,c(α) =
∑
g≤Q

∣∣∣∣∣∣∣∣
∑
x,y≤Q
s0(x)=g

∑
d≤P θ

d≤Q/x

e

(
k∑
i=0

αiDi(c)(dx)k−iyi
)∣∣∣∣∣∣∣∣

2

�
∑
g≤Q

Q1+ε
∑
x,y≤Q
s0(x)=g

P θQ/x

� Q3P θ+ε. (3.16)
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Thus an application of Hölder’s inequality in (3.14) gives

Ss,r �
(∑

c,�

∫
Tk+1

|H1,c,�(α)fc(α)2s|dα
)1−1

s
(∑

c,�

∫
Tk+1

|H1,c,�(α)H2,c(α)s|dα
)1
s

� Q3P θ+ε

(∑
c,�

∑
g≤Q

∫
Tk+1

|Gc,�,g(α;P )|2dα
)1
s

Ss,r(P,Q,R;ψ)1−1
s ,

where we have written fc(α) for fc(α;Q,R) and used a standard estimate for the divisor
function. But for a fixed choice of c,η, z̃, and w̃, the Inverse Function Theorem, in combi-
nation with Bézout’s Theorem, shows that there are O(1) choices of z and w satisfying

r∑
n=1

ηn(ψi(zn, wn; c)− ψi(z̃n, w̃n; c)) = 0 (0 ≤ i ≤ k)

with J2r(z,w; c) 6= 0. Hence by another divisor estimate we see that∑
c,�

∑
g≤Q

∫
Tk+1

|Gc,�,g(α;P )|2dα� C̃P 2r+ε,

and the result follows in the case where (3.12) holds. The case where (3.13) holds is handled
in exactly the same manner.

(iv) Suppose that S6 ≥ S5, and consider a solution counted by S6. For a given index j,
let q and p denote the largest divisors of xj and yj, respectively, with

(q, J2r(z,w; c)) = (p, J2r(z,w; c)) = 1.

Then, since neither (3.12) nor (3.13) holds, we have q > P θ and p > P θ. Thus we can find
divisors qj of xj and pj of yj such that P θ < qj , pj ≤ P θR and (qjpj, J2r(z,w; c)) = 1, and
we proceed similarly with the x̃j and ỹj , except that we replace J2r(z,w; c) by J2r(z̃, w̃; c).
Hence we see that S6 � V1, where V1 denotes the number of solutions of

r∑
n=1

ηn(ψi(zn, wn; c)− ψi(z̃n, w̃n; c))

+ Di(c)

s∑
j=1

((qjuj)
k−i(pjvj)i − (q̃j ũj)

k−i(p̃j ṽj)i) = 0 (0 ≤ i ≤ k).

with (3.4), (3.5), and for 1 ≤ j ≤ s

P θ < qj , pj, q̃j, p̃j ≤ P θR, (qj, pj), (q̃j, p̃j) ≤ P γ, (3.17)

uj, vj , ũj, ṽj ∈ A(QP−θ, R), (uj, vj), (ũj, ṽj) ≤ P γ,

and

(qjpj , J2r(z,w; c)) = (q̃j p̃j, J2r(z̃, w̃; c)) = 1.

Now write

Fc,�,q(α;P,R) =
∑
z,w

(q,J2r(z,w;c))=1

e(Ξ(α; 0, 0, z,w; c,η))
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and

Fc,j(α) = fc(qjpjα;QP−θ, R)fc(−q̃jp̃jα;QP−θ, R),

where

qjpjα = (α0q
k
j , α1q

k−1
j pj , . . . , αkp

k
j ) and q̃jp̃jα = (α0q̃

k
j , α1q̃

k−1
j p̃j , . . . , αkp̃

k
j ).

Then we have

V1 ≤
∑
c,�

∫
Tk+1

∑
q,p,q̃,p̃

Fc,�,π(α;P,R)Fc,�,π̃(−α;P,R)

s∏
i=1

Fc,j(α) dα, (3.18)

where

π = q1 · · · qsp1 · · · ps and π̃ = q̃1 · · · q̃sp̃1 · · · p̃s,

and where the sum is over q, p, q̃, p̃ satisfying (3.17). Let

Xc,�,j(α) =
∣∣Fc,�,π(α;P,R)2fc(qjpjα;QP−θ, R)2s

∣∣,
and let Yc,�,j(α) be the analogous function for the q̃j and p̃j. Then by (3.18) and two
applications of Hölder’s inequality (as in [17]), we obtain

S6 �
∑

q,p,q̃,p̃

s∏
j=1

(∑
c,�

∫
Tk+1

Xc,�,j(α) dα

)1/2s(∑
c,�

∫
Tk+1

Yc,�,j(α) dα

)1/2s

.

Now we observe that ∑
c,�

∫
Tk+1

Xc,�,j(α) dα = W (P,Q,R, qj, pj),

where W (P,Q,R, q, p) denotes the number of solutions of (3.7) with (3.4), (3.5), (3.9),
(3.10), and (3.11). Thus we have

S6 �
∑

q,p,q̃,p̃

s∏
j=1

W (P,Q,R, qj, pj)
1/2sW (P,Q,R, q̃j, p̃j)

1/2s,

whence by Hölder’s inequality

S6 �
( ∑

q,p,q̃,p̃

1

)1−1/2s( ∑
q,p,q̃,p̃

s∏
j=1

W (P,Q,R, qj, pj)W (P,Q,R, q̃j, p̃j)

)1/2s

� (P θR)4s−2

(
2s∏
j=1

∑
q,p

W (P,Q,R, qj, pj)

)1/2s

� (P θR)4s−2 Ts,r(P,Q,R, θ;ψ),

and this completes the proof of the lemma.

The following modification of Lemma 3.1 may be more useful for smaller values of k.
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Lemma 3.2. Given ε > 0, there exists a positive number η = η(ε, s, k) such that whenever
R ≤ P η one has

Ss,r(P,Q,R;ψ) � C̃P 3r−1Ss(Q,R) +Q3P θ+εS̃s−1,r(P,Q,R;ψ)

+ P (4s−2)θ+ε Ts,r(P,Q,R, θ;ψ).

Proof. The only change occurs in part (iii) of the proof, where the number of solutions
counted by S5 is estimated. Substituting the bounds (3.15) and (3.16) into (3.14), we
obtain

Ss,r(P,Q,R;ψ) � Q3P θ+ε
∑
c,�

∑
g≤Q

∫
Tk+1

|Gc,�,g(α;P )2fc(α;Q,R)2s−2| dα,

and the lemma follows on considering the underlying Diophantine equations and recalling
a standard estimate for the divisor function.

Now let T̃s,r(P,Q,R, θ;ψ) denote the number of solutions of (3.7) with (3.4), (3.5), (3.8),
(3.9), (3.10) and also

zn ≡ z̃n (mod qkpk) and wn ≡ w̃n (mod qkpk) (1 ≤ n ≤ r). (3.19)

Lemma 3.3. Given ε > 0, there exists a positive number γ0 = γ0(ε, s, k) such that when-
ever γ ≤ γ0 one has

Ts,r(P,Q,R, θ;ψ) � (P θR)2r(2r−1)+εT̃s,r(P,Q,R, θ;ψ).

Proof. When q and p satisfy (3.8), let Bq,p(u; c,η) denote the set of solutions (z,w) of the
system of congruences

Υi(z,w; c,η) ≡ ui (mod qk−ipi) (0 ≤ i ≤ k) (3.20)

with 1 ≤ zn, wn ≤ (qp)k and (qp, J2r(z,w; c)) = 1, where

Υi(z,w; c,η) =

r∑
n=1

ψi(zn, wn; c).

By Lemma 2.2 we have

card(Bq,p(u; c,η)) � (pq)r(2r−1)+ε,

on taking γ sufficiently small in terms of ε. Now observe that for each solution counted by
Ts,r(P,Q,R, θ;ψ) we have

Υi(z,w; c,η) ≡ Υi(z̃, w̃; c,η) (mod qk−ipi),

so for each i we can classify the solutions of (3.7) according to the common residue class
modulo qk−ipi of Υi(z,w; c,η) and Υi(z̃, w̃; c,η). Let

Hq,p(α; z,w; c,η) =
∑

x∈[1,P ]r

xn≡zn(qkpk)

∑
y∈[1,P ]r

yn≡wn(qkpk)

e

(
k∑
i=0

αiΥi(x,y; c,η)

)
.

Then

Ts,r(P,Q,R, θ;ψ) �
∑
q,p

∑
c,�

∫
Tk+1

H̃q,p(α; c,η)|f̃c,q,p(α;QP−θ, R)|2sdα,
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where

H̃q,p(α; c,η) =

qk∑
u0=1

qk−1p∑
u1=1

· · ·
pk∑

uk=1

∣∣∣∣∣∣
∑

(z,w)∈Bq,p(u;c,�)

Hq,p(α; z,w; c,η)

∣∣∣∣∣∣
2

and

f̃c,q,p(α;L,R) =
∑

x,y∈A(L,R)
(x,y)≤P γ

e

(
k∑
i=0

αiDi(c)(qx)k−i(py)i
)
.

Now by Cauchy’s inequality,

H̃q,p(α; c,η) ≤
qk∑

u0=1

qk−1p∑
u1=1

· · ·
pk∑

uk=1

card(Bq,p(u; c,η))
∑

(z,w)∈Bq,p(u;c,�)

|Hq,p(α; z,w; c,η)|2,

and thus

Ts,r(P,Q,R, θ;ψ) � (P θR)2r(2r−1)+ε
∑
q,p
c,�

∑
z,w

1≤zn≤qkpk

1≤wn≤qkpk

∫
Tk+1

|Hq,p|2|f̃c,q,p|2sdα

� (P θR)2r(2r−1)+ε T̃s,r(P,Q,R, θ;ψ).

This completes the proof.

4. Efficient Differencing

Define the difference operator ∆∗
j recursively by

∆∗
1(f(x, y); h; g) = f(x+ h, y + g)− f(x, y)

and

∆∗
j+1(f(x, y); h1, . . . , hj+1; g1, . . . , gj+1)

= ∆∗
1(∆

∗
j (f(x, y); h1, . . . , hj; g1, . . . , gj); hj+1; gj+1),

with the convention that

∆∗
0(f(x, y);h; g) = f(x, y).

Further, write

ψi,j(z, w;h, g;m,n) = ∆∗
j (z

k−iwi; h′1, . . . , h
′
j; g

′
1, . . . , g

′
j),

where

h′i = hi(mini)
k and g′i = gi(mini)

k, (4.1)

and put

rj =

[
k − j + 1

2

]
. (4.2)
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Our first task is to show that the polynomials ψi,j satisfy the conditions of Lemma 2.3,
so that the results of the previous section may be applied. We start by expressing ∆∗

j in
terms of the more familiar difference operators ∆j defined by

∆1(f(x); h) = f(x+ h)− f(x)

and

∆j+1(f(x); h1, . . . , hj+1) = ∆1(∆j(f(x); h1, . . . , hj); hj+1).

For simplicity, we introduce the functions

χi,j(z, w;h; g) = ∆∗
j (z

k−iwi; h1, . . . , hj ; g1, . . . , gj) (4.3)

and observe that

ψi,j(z, w;h, g;m,n) = χi,j(z, w;h′, g′),

where h′ and g′ are defined by (4.1). As in Section 2, we write Jd for the set {1, . . . , d},
and also write Ãd for the set Jd \ A. When A = {i1, . . . , im} ⊂ Jj with i1 < · · · < im,
define

q(i)
m (w; g,A) = ∆m(wi; gi1, . . . , gim), (4.4)

and when A is as above and B = {j1, . . . , jt} ⊂ Jj with j1 < · · · < jt, define

p
(i)
t (z;h,A,B) = ∆t((z + hi1 + · · ·+ him)k−i; hj1, . . . , hjt). (4.5)

Lemma 4.1. We have

χi,j(z, w;h; g) =

j∑
m=0

∑
A⊂Jj

|A|=m

p
(i)
j−m(z;h,A, Ãj)q

(i)
m (w; g,A).

Proof. We fix i, h, and g and proceed by induction on j. For brevity, we write χi,j(z, w),
qm(w;A), and pt(z;A,B) for the functions defined by (4.3), (4.4), and (4.5), respectively.
For j = 0 we have

χi,0(z, w) = zk−iwi = p0(z; ∅, ∅)q0(w; ∅).
Now assume the result holds for j − 1. Then we have

χi,j(z, w) = χi,j−1(z + hj , w + gj)− χi,j−1(z, w),

so by the inductive hypothesis we obtain

χi,j(z, w) =

j−1∑
m=0

∑
A⊂Jj−1

|A|=m

θi,j(z, w;m;A),

where

θi,j = pj−1−m(z + hj ;A, Ãj−1)qm(w + gj;A)− pj−1−m(z;A, Ãj−1)qm(w;A).

The above expression can be rewritten as

θi,j = pj−m(z;A, Ãj)qm(w;A) + pj−1−m(z + hj ;A, Ãj−1)qm+1(w;A∪ {j}),
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so we have

χi,j =

j−1∑
m=0

( ∑
A⊂Jj−1

|A|=m

pj−m(z;A; Ãj)qm(w;A) +
∑
A⊂Jj

|A|=m+1
j∈A

pj−(m+1)(z;A; Ãj)qm+1(w;A)

)

=

j−1∑
m=0

∑
A⊂Jj

|A|=m
j/∈A

pj−m(z;A; Ãj)qm(w;A) +

j∑
m=1

∑
A⊂Jj

|A|=m
j∈A

pj−m(z;A; Ãj)qm(w;A),

and the lemma follows.

Now we show that the 2× 2 Jacobians satisfy the condition imposed in Lemma 2.3.

Lemma 4.2. Suppose that 0 ≤ j < k and i1 < i2 ≤ k − j. Then we have

di1,i2(z, w;χj) = p(z)wi1+i2−1 +Oz(w
i1+i2−2),

where p(z) is a non-trivial polynomial of degree at most 2k.

Proof. When i < k − j, we have by Lemma 4.1 that

∂χi,j
∂z

=
∂

∂z

(
∆j(z

k−i; h1, . . . , hj)
)
wi +Oz(w

i−1)

and

∂χi,j
∂w

= i∆j(z
k−i; h1, . . . , hj)w

i−1 +Oz(w
i−2),

and we recall (see for example Exercise 2.1 of Vaughan [12]) that

∆j(z
k; h1, . . . , hj) = k(k − 1) · · · (k − j + 1)h1 · · ·hjzk−j +O(zk−j−1).

Hence if i2 < k − j then we have

di1,i2(z, w;χ) = p(z)wi1+i2−1 +Oz(w
i1+i2−2),

where the leading term of p(z) is

(h1 · · ·hj)2(k − i1)!(k − i2)!

(k − i1 − j)!(k − i2 − j)!
((k − i1 − j)i2 − (k − i2 − j)i1)z

2k−i1−i2−2j−1,

and the lemma follows in this case on noting that

(k − i1 − j)i2 − (k − i2 − j)i1 = (k − j)(i2 − i1) 6= 0.

Now if i = k − j we obtain from Lemma 4.1 that

∂χi,j
∂z

= Oz(w
i−1)

and

∂χi,j
∂w

= i(k − i)! h1 · · ·hjwi−1 +Oz(w
i−2).
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Thus if i2 = k − j then we have

di1,i2 =

(
i2(h1 · · ·hj)2(k − i1)!(k − i2)!

(k − i1 − j − 1)!
zk−i1−j−1 +O(zk−i1−j−2)

)
wi1+i2−1

+ Oz(w
i1+i2−2),

and this completes the proof.

We now consider the effect of substituting ψi,j(z, w;h, g;m,n) for ψi(z, w; c) in the anal-
ysis of Section 3. For 1 ≤ j ≤ k, suppose that 0 ≤ φj ≤ 1/2k, and put

Mj = P φj , Hj = PM−2k
j , and Qj = P (M1 · · ·Mj)

−1.

Further, write

M̃j =

j∏
i=1

Mi and H̃j =

j∏
i=1

Hi.

We replace (3.5) by the conditions

1 ≤ hi, gi ≤ Hi (1 ≤ i ≤ j), (4.6)

Mi < mi, ni ≤MiR, and (mi, ni) ≤ P γ (1 ≤ i ≤ j), (4.7)

and take

Di(m,n) =

j∏
l=1

mk−i
l nil.

On replacing hi by hi(mini)
k and gi by gi(mini)

k in the above results, we see that
ψ0,j , . . . , ψ2r−1,j satisfy the hypotheses of Lemma 2.3 whenever r ≤ rj . Thus we may apply
Lemma 3.1 to relate Ss,rj(P,Qj, R;ψj) to Ts,rj(P,Qj, R, φj+1;ψj). The following lemma
then relates Ts,rj(P,Qj, R, φj+1;ψj) to Ss,rj+1

(P,Qj, R;ψj+1) and hence allows us to repeat
the differencing process.

Lemma 4.3. Suppose that r ≤ 2w and 0 ≤ j < k. Then given ε > 0, there exists
η = η(ε, s, k) such that whenever R ≤ P η one has

T̃s,r(P,Qj, R, φj+1;ψj) � P (3−2kφj+1)r+εH̃2
j M̃

2
j+1Ss(Qj+1, R)

+ P εH2r−2
j+1

(
H̃2
j+1M̃

2
j+1Ss(Qj+1, R)

)1−r/2w(
Ss,w(P,Qj+1, R;ψj+1)

)r/2w
.

Proof. Write θ = φj+1, and define

La,b,d(α;h, g;m,n) =
∑

1≤z≤P
z≡a (d)

∑
1≤w≤P
w≡b (d)

e

(
k∑
i=0

αiψi,j(z, w;h, g;m,n)

)
,

Kd(α;h, g;m,n) =

d∑
a=1

d∑
b=1

|La,b,d(α;h, g;m,n)|2,
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and

gq,p(α;m,n) =
∑

x,y∈A(Qj+1,R)
(x,y)≤P γ

e

(
k∑
i=0

αiDi(m,n)(qx)k−i(py)i
)
.

Then on considering the underlying Diophantine equations, we have

T̃s,r �
∑

h,g,m,n

∑
Mj+1<p,q≤Mj+1R

(p,q)≤P γ

∫
Tk+1

Kqkpk(α;h, g;m,n)r|gq,p(α;m,n)|2sdα.

Let U0 be the number of solutions counted by T̃s,r with zn = z̃n or wn = w̃n for some
n, and let U1 be the number of solutions in which zn 6= z̃n and wn 6= w̃n for all n, so that
T̃s,r = U0 + U1.

First suppose that U0 ≥ U1, so that T̃s,r � U0. Then

U0 � P 3−2kφj+1

∑
h,g,m,n

∑
Mj+1<p,q≤Mj+1R

∫
Tk+1

Kqkpk(α;h, g;m,n)r−1|gq,p(α;m,n)|2sdα,

and by using Hölder’s inequality twice as in [17], we find that

T̃s,r � P (3−2kφj+1)r+εH̃2
j M̃

2
j+1Ss(Qj+1, R). (4.8)

Now suppose that U1 ≥ U0, so that T̃s,r � U1. Note that for each solution counted by
U1 we can write

z̃n = zn + h̃nq
kpk and w̃n = wn + g̃nq

kpk

for 1 ≤ n ≤ r, where h̃n, g̃n are integers satisfying 1 ≤ |h̃n|, |g̃n| ≤ Hj+1. Thus we see that

U1 ≤
∑

�∈{±1}r

U2(η),

where U2(η) is the number of solutions of the system

r∑
l=1

ηlψi,j+1(zl, wl;h, h̃l; g, g̃l;m, q;n, p)

+ Di(m,n)qk−ipi
s∑

m=1

(uk−im vim − ũk−im ṽim) = 0 (0 ≤ i ≤ k)

with z,w,u,v, ũ, ṽ,h, g,m,n satisfying (3.4), (3.9), (3.10), (4.6), and (4.7), and with

1 ≤ h̃l, g̃l ≤ Hj+1 (1 ≤ l ≤ r),

Mj+1 < p, q ≤Mj+1R, and (q, p) ≤ P γ.

On writing

G(α; h̃, g̃; q, p) =
∑

1≤z,w≤P
e

(
k∑
i=0

αiψi,j+1(z, w;h, h̃; g, g̃;m, q;n, p)

)
,
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we have by Hölder’s inequality that

U2(η) �
∑

h,g,m,n

∑
q,p

∫
Tk+1

∣∣∣∣∣∣
∑

1≤g̃,h̃≤Hj+1

G(α; h̃, g̃, q, p)

∣∣∣∣∣∣
r

|gq,p(α;m,n)|2s dα

� H2r−2
j+1

∑
h,g,m,n

∑
q,p,h̃,g̃

∫
Tk+1

|G(α; h̃, g̃, q, p)|r|gq,p(α;m,n)|2sdα.

Thus on using Hölder’s inequality twice more and considering the underlying Diophantine
equations, we see that

U2(η) � H2r−2
j+1

∑
h,g,m,n

q,p,h̃,g̃

(∫
Tk+1

|G|2w|gq,p|2sdα
)r/2w (∫

Tk+1

|gq,p|2sdα
)1−r/2w

� H2r−2
j+1

(
Ss,w(P,Qj+1, R;ψj+1)

)r/2w(
P εH̃2

j+1M̃
2
j+1Ss(Qj+1, R)

)1−r/2w
,

and the lemma follows on combining this with (4.8).

In analogy with Lemma 4.2 of [17], one might hope to refine the above argument to allow
the factor of P (3−2kφj+1)r in the first term of the estimate to be replaced by P 2r, but it is not
clear that this can be achieved. As will be seen in Section 6, such an improvement would
have a significant impact on the strength of our repeated efficient differencing procedure.

5. Mean Value Estimates Based on Single Differencing

In this section, we consider estimates for Ss(P,R) arising from a single efficient difference,
reserving the full power of the preceding analysis for Section 6.

Suppose that 0 < θ ≤ 1/2k, write r = r0 =
[
k+1
2

]
, and put

M = P θ, H = PM−2k, and Q = PM−1.

Further, let

F (α;P ) =
∑

1≤z,w≤P
e(α0z

k + α1z
k−1w + · · ·+ αkw

k),

G(α; q, p) =
∑

1≤h,g≤H

∑
1≤z,w≤P

e

(
k∑
i=0

αiψi,1(z, w; h, g; q, p)

)
,

gq,p(α;P,Q,R) =
∑

x,y∈A(Q,R)
(x,y)≤P γ

e

(
k∑
i=0

αi(qx)
k−i(py)i

)
,

and

Ms,r(P,Q,R) =
∑

M≤p,q≤MR

∫
Tk+1

∣∣G(α; q, p)rgq,p(α;P,Q,R)2s
∣∣ dα.
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We say that λs is a permissible exponent if for every ε > 0 there exists η = η(ε, s, k)
such that Ss(P,R) �ε P

λs+ε whenever R ≤ P η. Further, we recall that the exponent ∆s

admissible if λs = 4s− k(k + 1) + ∆s is permissible.

Lemma 5.1. Let θ = 1/2k, and suppose that s ≥ k2/(1 − θ). If ∆s ≤ k(k + 1) is an
admissible exponent, then the exponent ∆s+r = ∆s(1− θ) is admissible.

Proof. By Lemmata 3.1 and 3.3, we have

Ss,r(P, P,R;ψ0) � P 3r−1Ss(P,R) + P (3+θ)s+2r+ε

+P εM4s−2+2r(2r−1)T̃s,r(P, P,R, θ;ψ0)
(5.1)

for γ sufficiently small, and by the argument of the proof of Lemma 4.3 we have

T̃s,r(P, P,R, θ;ψ0) � P (3−2kθ)r+εM2Ss(Q,R) +Ms,r(P,Q,R). (5.2)

Since θ = 1/2k, we have H = 1, so by a trivial estimate we obtain

Ms,r(P,Q,R) �M2P 2r+εSs(Q,R).

Hence on recalling Lemma 2.1 and considering the underlying Diophantine equations, we
obtain from (5.1) and (5.2) that

Ss+r(P,R) � P 2s+2r+ε + Ss,r(P, P,R;ψ0) � P 3r−1Ss(P,R)

+P (3+θ)s+2r+ε + P 2r+εM4s+2r(2r−1)Ss(Q,R).
(5.3)

Thus, since λs = 4s− k(k + 1) + ∆s is permissible, we have

Ss+r(P,R) � PΛ1+ε + PΛ2+ε + PΛ3+ε,

where

Λ1 = 4(s+ r)− k(k + 1)− (r + 1) + ∆s,

Λ2 = 4(s+ r)− k(k + 1)− s(1− θ)− 2r + k(k + 1),

and

Λ3 = 4(s+ r)− k(k + 1) + ∆s(1− θ).

Now since r + 1 ≥ k+1
2

and ∆s ≤ k(k + 1), we have ∆sθ ≤ r + 1 and hence Λ1 ≤ Λ3.
Furthermore, since s(1 − θ) ≥ k2 and 2r ≥ k, we have Λ2 ≤ Λ3. Therefore, the exponent
∆s+r = ∆s(1− θ) is admissible, and this completes the proof.

Proof of Theorem 1. Let s1 be as in the statement of the theorem, and suppose that s ≥ s1.
Choose an integer t with s ≡ t (mod r) and s1 − r < t ≤ s1. Then since ∆t = k(k + 1) is
trivially admissible, we find by repeated use of Lemma 5.1 that the exponent

∆s = k(k + 1)

(
1− 1

2k

)(s−t)/r
≤ k(k + 1)

(
1− 1

2k

)(s−s1)/r

is admissible, and this completes the proof.
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6. Estimates Arising from Repeated Differencing

In this section, we explore the possibility of obtaining improved mean value estimates
by employing our efficient differencing procedure repeatedly. As we take more differences,
we must reduce the number of variables taken in a complete interval, so that the difference
polynomials ψj will satisfy the hypotheses of Lemma 2.3. This complicates the recursion
for generating admissible exponents and therefore requires some additional notation. Recall
the definition of rj from (4.2), and write

Ωj =
∑

2rj<l≤k+1

(k − l + 1) = 1
2
(k − 2rj + 1)(k − 2rj). (6.1)

For convenience, we also write r = r0 =
[
k+1
2

]
. Throughout this section, we will assume

that k is taken to be sufficiently large.

Lemma 6.1. Suppose that u ≥ k(k+1) and that ∆u ≤ k(k+1) is an admissible exponent.

For any integer j with 1 ≤ j ≤
√
k and s = u+ lr (l ∈ N), define the numbers ∆s, θs, and

φ(j, s, J) recursively as follows. For l ≥ 1, set φ(j, s, j) = 1/2k and evaluate φ(j, s, J − 1)
for J = j, . . . , 2 by

φ∗(j, s, J − 1) =
1

4k
+

(
1

2
+

2ΩJ−1 −∆s−r
8krJ−1

)
φ(j, s, J) (6.2)

and

φ(j, s, J) = min(1/2k, φ∗(j, s, J)).

Finally, put

∆s = ∆s−r(1− θs) + r(2kθs − 1) (6.3)

and

θs = min
1≤j≤√k

φ(j, s, 1).

Then ∆s is an admissible exponent for s = u+ lr (l ∈ N).

Proof. We start by noting that 0 < θs ≤ 1/2k and that θs is an increasing function of s.
Now let j denote the least integer with φ(j, s + r, 1) = θs+r and write φJ = φ(j, s + r, J).
As in the proof of [17], Theorem 6.1, we have φJ < 1/2k whenever J < j. In particular, it
follows that whenever J < j we have 2ΩJ −∆s < 0 and φJ = φ∗(j, s+ r, J). We claim that
φJ ≤ φJ+1 for J < j. By (6.2) and the above remarks, this is equivalent to

φJ+1

(
1

2
+

∆s − 2ΩJ

8krJ

)
≥ 1

4k
, (6.4)

and this is immediate when J = j− 1, since ∆s− 2Ωj−1 > 0 and φj = 1/2k. Assuming the
claim holds for J , then we see from (6.2) that

φJ

(
1

2
+

∆s − 2ΩJ−1

8krJ−1

)(
1

2
+

∆s − 2ΩJ

8krJ

)
≥ 1

4k

(
1

2
+

∆s − 2ΩJ−1

8krJ−1

)
,

and it follows on using (6.1) that

φJ

(
1

2
+

∆s − 2ΩJ−1

8krJ−1

)
≥ 1

4k

(
rJ
rJ−1

)
2rJ−1(4k + 1) + ∆s − k(k + 1)

2rJ(4k + 1) + ∆s − k(k + 1)
.
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Since ∆s ≤ k(k + 1) and rJ ≤ rJ−1, we see that (6.4) holds with J replaced by J − 1, and
our claim follows.

For 1 ≤ i ≤ j, we write

Mi = P φi, Hi = PM−2k
i , and Qi = P (M1 · · ·Mi)

−1,

with the convention that Q0 = P . We prove the lemma by induction on l, the case l = 0
having been assumed. Suppose that ∆s is admissible, so that Ss(Q,R) � Qλs+ε, where
λs = 4s− k(k + 1) + ∆s. We show inductively that

T̃s,rJ (P,QJ , R, φJ+1;ψJ) � P (3−2kφJ+1)rJ+εH̃2
JM̃

2
J+1Q

λs
J+1 (6.5)

for J = j− 1, . . . , 0. By Lemma 4.3 with j replaced by j− 1, r = rj−1 and w = rj , we have
that

T̃s,rj−1
(P,Qj−1, R, φj;ψj−1) � P (3−2kφj)rj−1+εH̃2

j−1M̃
2
j Ss(Qj , R)

+ P εH
2rj−1−2
j (H̃2

j M̃
2
j Ss(Qj, R))1−β(Ss,rj(P,Qj, R,ψj))

β,

where β = rj−1/(2rj). Then on making the trivial estimate

Ss,rj(P,Qj, R;ψj) � P 4rj+εH̃2
j M̃

2
j Ss(Qj, R)

and noting that φj = 1/2k and hence Hj = 1, we obtain

T̃s,rj−1
(P,Qj−1, R, φj;ψj−1) � P 2rj−1+εH̃2

j−1M̃
2
j Ss(Qj , R)

� P 2rj−1+εH̃2
j−1M̃

2
jQ

λs
j ,

on using the outer induction hypothesis. Thus (6.5) holds in the case J = j − 1.
Now suppose that (6.5) holds for J . Then, for γ sufficiently small, we have by Lemmata

3.1 and 3.3 that

Ss,rJ (P,QJ , R;ψJ) � P εH̃2
JM̃

2
J

(
PΛ1 + PΛ2 + PΛ3

)
,

where

Λ1 = 3rJ − 1 + λs(1− φ1 − · · · − φJ), (6.6)

Λ2 = 3s(1− φ1 − · · · − φJ) + sφJ+1 + 2rJ , (6.7)

and

Λ3 = (4s+ 2rJ(2rJ − 1))φJ+1 + (3− 2kφJ+1)rJ + λs(1− φ1 − · · · − φJ+1). (6.8)

Now since J ≤
√
k, we have rJ ∼ k/2, and it follows easily that Λ1 ≤ Λ3 and Λ2 ≤ Λ3 for

s ≥ k(k + 1) and k sufficiently large. Hence by Lemma 4.3 we have

T̃s,rJ−1
(P,QJ−1, R, φJ ;ψJ−1) � P (3−2kφJ)rJ−1+εH̃2

J−1M̃
2
JQ

λs
J

+P εH
2rJ−1−2
J

(
H̃2
JM̃

2
JQ

λs
J

)1−β′(
P (3−2kφJ+1)rJ+εM

4s−2+2rJ (2rJ−1)
J+1 H̃2

JM̃
2
J+1Q

λs
J+1

)β′
,

where β ′ = rJ−1/(2rJ). The second term here is

H̃2
J−1M̃

2
JQ

λs
J P

Λ+ε,

where

Λ = 2rJ−1(1− 2kφJ) +
rJ−1

2rJ

[
(3− 2kφJ+1)rJ + (4s+ 2rJ(2rJ − 1)− λs)φJ+1

]
.
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By (6.1) and (6.2), we have

(4s+ 2rJ(2rJ − 1)− λs)φJ+1 = (4krJ + 2ΩJ −∆s)φJ+1 = 8krJφJ − 2rJ ,

and hence

Λ = (5
2
− kφJ+1)rJ−1 ≤ (3− 2kφJ)rJ−1 + rJ−1(kφJ − 1

2
) ≤ (3− 2kφJ)rJ−1,

since φJ+1 ≥ φJ and φJ ≤ 1/2k. Thus (6.5) holds with J replaced by J − 1, so this
completes the inner induction. Now we apply (6.5) with J = 0 to obtain

T̃s,r(P, P,R, φ1;ψ0) � P (3−2kφ1)r+2φ1+λs(1−φ1)+ε,

whence by Lemmata 2.1, 3.1, and 3.3 we have (for γ sufficiently small) that

Ss+r(P,R) � P 2s+ε + Ss,r(P, P,R;ψ0) � PΛ1+ε + PΛ2+ε + PΛ3+ε,

where Λ1,Λ2, and Λ3 are given by (6.6), (6.7), and (6.8) with J = 0. Therefore, the
exponent

λs+r = 4(s+ r)− k(k + 1) + ∆s(1− θs+r) + r(2kθs+r − 1)

is permissible, and the desired conclusion holds with s replaced by s + r. This completes
the proof of the lemma.

Next we investigate the size of the admissible exponents supplied by Lemma 6.1.

Lemma 6.2. Suppose that s > k(k + 1) + r and that ∆s−r is an admissible exponent
satisfying

(log k)2 < ∆s−r ≤ 2rk.

Write δs−r = ∆s−r/4rk, and define δs to be the unique positive solution of the equation

δs + log δs = δs−r + log δs−r −
3

4k
+

1

k(log k)3/2
. (6.9)

Then the exponent ∆s = 4rkδs is admissible.

Proof. The proof is nearly identical to that of [17], Lemma 6.2. In view of (6.3), we may
assume that 0 ≤ ∆s ≤ 2rk and hence that 0 ≤ δs ≤ 1

2
. By Lemma 6.1 with

j =

[
1

2
(log k)1/4

]
+ 1, (6.10)

we see that the exponent

∆s = ∆s−r(1− θ) + r(2kθ − 1) = 4krδs−r − r + 2rk(1− 2δs−r)θ, (6.11)

is admissible, where θ = θs = φ(j, s, 1). We note that for 1 ≤ J < j one has

ΩJ ≤ 1
2
J(J + 1) < 1

2
(log k)1/2,

so on writing φJ for φ∗(j, s, J) we have

φJ−1 ≤
1

4k
+

1

2
(1− δ′)φJ , (6.12)

where

δ′ =
∆s−r − (log k)1/2

4kr
≥ δs−r(1− (log k)−3/2). (6.13)
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An easy induction using (6.12) shows that

φJ ≤
1

2k(1 + δ′)

(
1 + δ′

(
1− δ′

2

)j−J)
(1 ≤ J ≤ j),

and therefore

θ = φ1 ≤
1 + 21−jδ′

2k(1 + δ′)
.

Write L = (log k)−3/2. Since the expression on the right hand side of the above inequality
is a decreasing function of δ′, we see from (6.10) and (6.13) that

θ ≤ 1 + 21−jδs−r(1− L)

2k(1 + δs−r(1− L))
≤ 1 + δs−rL+ 21−jδs−r

2k(1 + δs−r)
≤ 1 + 2δs−rL

2k(1 + δs−r)

for k sufficiently large. It now follows from (6.11) that

∆s

4rk
≤ δs−r

(
1−

3
2
− w

2k(1 + δs−r)

)
,

where

w = (1− 2δs−r)(log k)−3/2.

Hence if δs is defined by (6.9), then since log(1− x) ≤ −x for 0 < x < 1, we have

∆s

4rk
+ log

∆s

4rk
≤ δs−r

(
1−

3
2
− w

2k(1 + δs−r)

)
+ log δs−r −

3
2
− w

2k(1 + δs−r)

≤ δs−r + log δs−r −
3

4k
+

1

k(log k)3/2

= δs + log δs,

so that δs ≥ ∆s/4rk, since δ + log δ is an increasing function of δ. It follows that 4rkδs is
admissible, and this completes the proof of the lemma.

We are now fully equipped to prove Theorem 2.

Proof of Theorem 2. We first note that the theorem is trivial when 1 ≤ s ≤ s0. Now when
s > s0, define δs to be the unique positive solution of the equation

δs + log δs = 1− 3(s− s0)

4rk
+

s− s0

rk(log k)3/2
. (6.14)

We show by induction that the exponent ∆s = 4krδs is admissible whenever s0 < s ≤ s1.
First suppose that s0 < s ≤ s0 + r, and observe that the exponent

∆s = k(k + 1) ≤ 2r(k + 1)

is trivially admissible. Then we have

∆s

4rk
≤ 1

2
+

1

2k
,

and hence
∆s

4rk
+ log

∆s

4rk
≤ 3

4
+ log

3

4
<

1

2
≤ 1− 3

4k
≤ δs + log δs
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for k ≥ 2. It it follows that the exponent 4rkδs is admissible, since δ+log δ is an increasing
function of δ. Now suppose that ∆s−r = 4krδs−r is admissible, where s0 + r < s ≤ s1. We
have by (6.14) that δs−r ≤ 1 and

δs−r + log δs−r ≥ 1− 3(s1 − s0)

4rk
> 1− log(4rk) + 2 log log k,

from which it follows that

δs−r >
(log k)2

4rk
.

Thus Lemma 6.2 shows that ∆s = 4rkγs is admissible, where γs is the unique positive
solution of

γs + log γs = δs−r + log δs−r −
3

4k
+

1

k(log k)3/2
.

Applying (6.14) with s replaced by s− r now shows that γs + log γs = δs + log δs, whence
γs = δs, and the induction is complete.

The theorem now follows immediately in the case where 1 ≤ s ≤ s1, since from (6.14)
and the definition of s1 we see that

log δs ≤ 2− 3(s− s0)

4rk

for k sufficiently large.
Now suppose that s > s1, and let U denote the largest integer with s ≡ U (mod r) and

U ≤ s1, so that U ≥ s1 − r. Then the exponent

∆U = 4rke2−3(U−s0)/4rk < e4(log k)2

is admissible, and the theorem follows on applying Lemma 5.1 repeatedly.

We note that in the presence of the refined version of Lemma 4.3 discussed at the end
of Section 4, we could replace the factor of r in the second term of (6.3) by 2r and the
3/4k term in (6.9) by 1/k. Hence we would obtain admissible exponents that decay like

k2e−2s/k2
in many cases of interest.

7. Weyl Estimates

Here we obtain the estimates for smooth Weyl sums quoted in Theorem 3 by making
simple modifications in the corresponding argument of Wooley [17]. In the end, a standard
application of the large sieve inequality shows that these estimates follow from the mean
value estimates of Theorems 1 and 2. Let

Cq(Q) = {x ∈ Z ∩ [1, Q] : s0(x)|s0(q)},

where s0(N) denotes the square-free kernel of N , write

ψ(x, y;α) =

k∑
i=0

αix
k−iyi, (7.1)
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and define the exponential sum

hr,v,v′(α;L,L′, R,R′; θ, θ′) =
∑

u∈A(L,R)
(u,r)=1

∑
u′∈A(L′,R′)

(u′,r)=1

e(ψ(uv, u′v′;α) + θu+ θ′u′).

Also, when π is a prime, we define a set of modified smooth numbers

B(M,π,R) = {v ∈ N : M < v ≤Mπ, π|v, and p|v ⇒ π ≤ p ≤ R}.

We have the following analogue of [17], Lemma 7.2.

Lemma 7.1. Suppose that α ∈ Rk+1 and r ∈ N. Then, whenever

R ≤M < Q� P and R ≤M ′ < Q′ � P,

we have∑
x∈A(Q,R)
y∈A(Q′,R)
(xy,r)=1

e(ψ(x, y;α)) � P ε max
π,π′≤R
π,π′prime

sup
θ,θ′∈[0,1]

∑
v∈B(M,π,R)
v′∈B(M ′,π′,R)

(vv′,r)=1

|hr,v,v′(α;T, T ′, π, π′; θ, θ′)|+ E,

where T = Q/M , T ′ = Q′/M ′, and E � Q′M +QM ′.

Proof. By Lemma 10.1 of Vaughan [11], we have∑
x∈A(Q,R)
y∈A(Q′,R)
(xy,r)=1

e(ψ(x, y;α)) =
∑

M<x≤Q
x∈A(Q,R)
(x,r)=1

∑
M ′<y≤Q′
y∈A(Q′,R)

(y,r)=1

e(ψ(x, y;α)) +O(Q′M +QM ′)

=
∑
π,π′≤R
π,π′prime
(r,ππ′)=1

U(α;Q,Q′,M,M ′, R, r, π, π′) +O(Q′M +QM ′),

where

U(α;Q,Q′,M,M ′, R, r, π, π′)

=
∑

v∈B(M,π,R)
(v,r)=1

∑
u∈A(Q/v,π)

(u,r)=1

∑
v′∈B(M ′,π′,R)

(v′,r)=1

∑
u′∈A(Q′/v′,π′)

(u′,r)=1

e(ψ(uv, u′v′;α)).

Now when v, v′ ≥M we can use orthogonality to write∑
u∈A(Q/v,π)
u′∈A(Q′/v′,π′)

(uu′,r)=1

e(ψ(uv, u′v′;α))

=

∫ 1

0

∫ 1

0

hr,v,v′(θ, θ
′)


 ∑
x≤Q/v

e(−θx)




 ∑
x′≤Q′/v′

e(−θ′x′)


 dθ dθ′,



28 SCOTT T. PARSELL

where we have abbreviated hr,v,v′(α;T, T ′, π, π′; θ, θ′) by hr,v,v′(θ, θ
′). Thus we see that

U(α;Q,Q′,M,M ′, R, r, π, π′)

�
∫ 1

0

∫ 1

0

∑
v∈B(M,π,R)
v′∈B(M ′,π′,R)

(vv′,r)=1

|hr,v,v′(θ, θ′)|min(Q/M, ‖θ‖−1) min(Q′/M ′, ‖θ′‖−1) dθ dθ′,

and the lemma follows on noting that∫ 1

0

min(X, ‖θ‖−1)dθ� 1 + logX

for X ≥ 1.

Theorem 3 is an easy consequence of the following lemma.

Lemma 7.2. Suppose that 0 < λ ≤ 1
2
, and write M = P λ. Let j be an integer with

0 ≤ j ≤ k, and let α ∈ Rk+1. Suppose that a ∈ Z and q ∈ N satisfy (a, q) = 1,
|qαj − a| ≤ 1

2
(MR)−k, q ≤ 2(MR)k, and either |qαj − a| > MP−k or q > MR. Then

whenever s is a natural number with 2s > max(j, k − j) and the exponent ∆s is admissible
we have

f(α;P,R)2s � P 4s+εM−1(P/M)∆s.

Proof. By Lemma 2.4, along with a standard estimate for the divisor function, we see that
card(Cq(X)) � Xε whenever log q � logX, and it follows that

f(α;P,R) =
∑

d,e∈Cq(P )∩A(P,R)

∑
x∈A(P/d,R)
y∈A(P/e,R)

(xy,q)=1

e(ψ(xd, ye;α))

� P ε max
d,e∈Cq(M/R)

∣∣∣∣∣∣∣∣∣∣∣
∑

x∈A(P/d,R)
y∈A(P/e,R)

(xy,q)=1

e(ψ(xd, ye;α))

∣∣∣∣∣∣∣∣∣∣∣
+ P 1+ε(PR/M).

Thus by Lemma 7.1 there exist d, e ∈ Cq(M/R), θ, θ′ ∈ [0, 1] and primes π, π′ ≤ R such
that

f(α;P,R) � P 2+εM−1 + P εg(α; d, e, π, π′, θ, θ′), (7.2)

where

g(α; d, e, π, π′, θ, θ′) =
∑

v∈B(M/d,π,R)
(v,q)=1

∑
v′∈B(M/e,π′,R)

(v′,q)=1

|hr,vd,v′e(α;P/M,P/M, π, π′; θ, θ′)|.

Let J(q, v, d, e, h) denote the number of solutions of the congruence (vd)k−j(xe)j ≡ h
(mod q) with 1 ≤ x ≤ q and (x, q) = 1. When (v, q) = 1, a solution x counted by
J(q, v, d, e, h) satisfies dk−jejxj ≡ h′ (mod q), and we then necessarily have (h′, q)|dk−jej .
In this instance, a simple application of the Chinese Remainder Theorem shows that

J(q, v, d, e, h) � qεdk−jej .
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Thus for any fixed v with (v, q) = 1, we may divide the integers v′ with M/e < v′ ≤MR/e
and (v′, q) = 1 into L � qεdk−jej classes V1, . . . ,VL such that, whenever v′1, v

′
2 ∈ Vr and

(vd)k−j(v′1e)
j ≡ (vd)k−j(v′2e)

j (mod q), we have v′1 ≡ v′2 (mod q).
Now put Q = P/M , and write cy for the number of solutions of the system

s∑
i=1

uk−ji (u′i)
j = yj (0 ≤ j ≤ k)

with

ui ∈ A(Q, π) and u′i ∈ A(Q, π′) (1 ≤ i ≤ s)

and

(ui, q) = (u′i, q) = 1 (1 ≤ i ≤ s).

Further, write g(α) for g(α; d, e, π, π′, θ, θ′). Then for some r with 1 ≤ r ≤ L we have by
Hölder’s inequality that

|g(α)|2s � P εdk−jej(M2R2/de)2s−1
∑

v∈B(M/d,π,R)
(v,q)=1

∑
v′∈Vr

∣∣∣∣∣
∑
y

bye(ψ(vd, v′e;αy))

∣∣∣∣∣
2

,

where |by| ≤ cy. Here we have written αy = (α0y0, . . . , αkyk), and the summation is over
y with 1 ≤ yi ≤ sQk. Applying Cauchy’s inequality, we obtain

|g(α)|2s � P εM4s−2Qk2
∑∗

y

∑
v∈B(M/d,π,R)

(v,q)=1

∑
v′∈Vr

∣∣∣∣∣∣
∑
yj

bye(αj(vd)
k−j(v′e)jyj)

∣∣∣∣∣∣
2

, (7.3)

where
∑∗ denotes the sum over yi with i 6= j.

We now show that the quantities αj(vd)
k−j(v′e)j are well-spaced modulo 1 as v′ runs

through the set Vr, and it is here that we use the “minor arc” conditions on αj imposed in
the statement of the lemma. Fix v ∈ B(M/d, π, R), and note that if v′1, v

′
2 ∈ Vr and v′1 6≡ v′2

(mod q) then since |qαj − a| ≤ 1
2
(MR)−k we have

∥∥αj((vd)k−j(v′1e)j − (vd)k−j(v′2e)
j)
∥∥ ≥

∥∥∥∥aq ((vd)k−j(v′1e)j − (vd)k−j(v′2e)
j
)∥∥∥∥− 1

2q

≥ 1

2q
.

In particular, if q > MR/e, then the elements of Vr are distinct modulo q, so the αj(vd)
k−j(v′e)j

with v′ ∈ Vr are spaced at least 1
2
q−1 apart. Thus it suffices to consider the case when v′1

and v′2 are distinct elements of Vr with v′1 ≡ v′2 (mod q) and q ≤ MR/e. In this case we
have ∥∥αj((vd)k−j(v′1e)j − (vd)k−j(v′2e)

j)
∥∥ =

∥∥∥∥
(
αj −

a

q

)
(vd)k−jej((v′1)

j − (v′2)
j)

∥∥∥∥
=

∣∣∣∣αj − a

q

∣∣∣∣ (vd)k−jej∣∣(v′1)j − (v′2)
j
∣∣.
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Now since |qαj − a| > MP−k and v′1 − v′2 is a nonzero multiple of q, we get∥∥αj((vd)k−j(v′1e)j − (vd)k−j(v′2e)
j)
∥∥ ≥MP−k(vd)k−jej(v′1)

j−1 ≥ (P/M)−k,

and thus on applying the large sieve inequality to (7.3) we obtain

g(α; d, e, π, π′, θ, θ′)2s � P εM4s−2(P/M)k
2

(q + (P/M)k)
∑

v∈B(M/d,π,R)

∑
y

|by|2.

But
∑

y |by|2 ≤ Ss(P/M,R) and q ≤ 2(MR)k � (P/M)k so on recalling (7.2) we have

f(α;P,R)2s � P 4s+εM−2s + P εM4s−1(P/M)k
2

(P/M)k(P/M)4s−k(k+1)+∆s

� P 4s+εM−1(P/M)∆s,

as required.

Proof of Theorem 3. Suppose that α ∈ mλ(k+1) and write M = P λ. By Dirichlet’s Theorem
there exist bi ∈ Z and qi ∈ N with (bi, qi) = 1 such that

|qiαi − bi| ≤
1

2
(MR)−k and qi ≤ 2(MR)k (0 ≤ i ≤ k).

If for some j we have either

|αj − bj/qj | > q−1
j MP−k or qj > MR,

then the desired conclusion follows from Lemma 7.2. Otherwise, write q = [q0, . . . , qk] and
ai = biq/qi. Then (a0, . . . , ak, q) = 1, and for each i we have

q ≤ qi(MR)k ≤ (MR)k+1 = P λ(k+1)Rk+1

and

|αi − ai/q| ≤ q−1(MR)kMP−k = q−1P λ(k+1)−kRk.

This contradicts the assumption that α ∈ mλ(k+1) and hence completes the proof.

Proof of Corollary 3.1. We apply Theorem 3 with λ = 1
2(k+1)

. By (1.5), we have

σ(λ) = max
2s≥k+1

1− (2k + 1)∆s

4s(k + 1)
.

Then on taking

s =

[(
7

3
log 4rk + 2 log log k + 8

)
rk

]
+ 1 ∼ 7

3
k2 log k,

we have by Theorem 2 that the exponent

∆s = e4(log k)2e−(s−s1)/2rk ≤ 1

k(log k)1/3

is admissible. It follows that

σ(λ) ≥ 1 +O((log k)−1/3)
28
3
k3(log k +O(log log k))

∼
(

28

3
k3 log k

)−1

.
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We remark that the proof of Lemma 7.2, with trivial modifications, may be applied to
more general exponential sums of the form

f(α;P,Q,R)
∑

x∈A(P,R)

∑
y∈A(Q,R)

e(α0x
k + α1x

k−1y + · · ·+ αky
k),

provided that P � Q, and hence Theorem 3 and Corollary 3.1 hold in this case as well.
This observation will be useful in the analysis of Section 10.

8. Generating Function Asymptotics

In this section, we derive the asymptotic formulas for our generating functions, which will
be required to handle the major arcs in our subsequent applications of the circle method.

As is now familiar in the applications of smooth numbers to additive number theory, one
can only obtain asymptotics for the exponential sum f(α;P,R) on a very thin set of major
arcs, so it is necessary to introduce sums over a complete interval in order to facilitate a
pruning procedure. Thus we write

F (α) =
∑

1≤x,y≤P
e(α0x

k + α1x
k−1y + · · ·+ αky

k),

and we also define

S(q, a) =
∑

1≤x,y≤q
e

(
a0x

k + a1x
k−1y + · · ·+ aky

k

q

)
,

v(β) =

∫ P

0

∫ P

0

e(β0γ
k + β1γ

k−1ν + · · ·+ βkν
k) dγ dν, (8.1)

and

V (α) = V (α; q, a) = q−2S(q, a)v(α− a/q).

Lemma 8.1. When αi = ai/q + βi for 0 ≤ i ≤ k, one has

F (α)− V (α) � q2 + qP k+1 (|β0|+ · · ·+ |βk|) .
Proof. On sorting the terms into arithmetic progressions modulo q, we have

F (α) =

q∑
r=1

q∑
s=1

e

(
a0r

k + · · ·+ aks
k

q

) ∑
0≤i≤P−r

q

∑
0≤j≤P−s

q

e(ψ(iq + r, jq + s;β)),

where ψ(x, y;α) is as in (7.1). Thus on making the change of variables γ = qz + r and
ν = qw + s in (8.1), we obtain

F (α)− V (α) =
∑

1≤r,s≤q
e

(
a0r

k + · · ·+ aks
k

q

)

∑
i,j

i+1∫
i

j+1∫
j

H(z, w) dz dw +O(1)


 ,

where

H(z, w) = H(z, w; r, s; i, j;β) = e(ψ(iq + r, jq + s;β))− e(ψ(qz + r, qw + s;β)).

Using the mean value theorem, we find that

H(z, w) � qP k−1 (|β0|+ · · ·+ |βk|)
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when (z, w) ∈ [i, i+ 1]× [j, j + 1], and hence

F (α)− V (α) � q2(1 + q−1P k+1 (|β0|+ · · ·+ |βk|)),

from which the lemma follows.

We now begin to analyze the sum f(α;P,R). First we record a partial summation lemma
analogous to Lemma 2.6 of Vaughan [12].

Lemma 8.2. Let cm,n be arbitrary complex numbers, and suppose that F (x, y) has contin-
uous partial derivatives on [0, X]× [0, Y ]. Then∑

m≤X
n≤Y

cm,nF (m,n) =
∑
m≤X
n≤Y

cm,n
(
F (X, n) + F (m,Y )− F (X, Y )

)

+

∫ X

0

∫ Y

0

∂2

∂γ∂ν
F (γ, ν)


∑
m≤γ
n≤ν

cm,n


 dν dγ.

Proof. Write Fγ(ν) = ∂
∂γ
F (γ, ν). Then we have

Fγ(n) = Fγ(Y )−
∫ Y

n

∂

∂ν
Fγ(ν) dν

and

F (m,n) = F (X, n)−
∫ X

m

Fγ(n) dγ.

Thus we can write

F (m,n) = F (X, n)−
∫ X

m

Fγ(Y ) dγ +

∫ X

m

∫ Y

n

∂2

∂γ∂ν
F (γ, ν) dν dγ,

and the lemma follows on summing over m and n and interchanging the order of integration
and summation in the last term.

Using the well-known asymptotics for card(A(X,R)) in terms of Dickman’s ρ function,
we can record the following lemma.

Lemma 8.3. Let τ be a fixed number, and suppose that R ≤ m,n ≤ Rτ . Then∑
x∈A(m,R)
y∈A(n,R)

1 = ρ

(
logm

logR

)
ρ

(
log n

logR

)
mn +O

(
mn

logR

)
.

Proof. By Lemma 5.3 of Vaughan [11], we have

∑
x∈A(X,R)

1 = ρ

(
logX

logR

)
X +O

(
X

logX

)

whenever R ≤ X ≤ Rτ , and the result follows immediately.
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Now let W be a parameter at our disposal, and write

N(q, a) = {α ∈ Tk+1 : |αi − ai/q| ≤WP−k (0 ≤ i ≤ k)} (8.2)

whenever q ≤W and (q, a0, . . . , ak) = 1. Further, let R = P η, and write

w(β) =

∫ P

R

∫ P

R

ρ

(
log γ

logR

)
ρ

(
log ν

logR

)
e(β0γ

k + · · ·+ βkν
k) dγ dν. (8.3)

Lemma 8.4. Suppose that α ∈ N(q, a) with q ≤ R, and write βi = αi − ai/q. Then we
have

f(α;P,R) = q−2S(q, a)w(β) +O

(
q2P 2W 2

logP

)
.

Proof. By arguing as in the proof of Vaughan [11], Lemma 5.4, we obtain∑
x∈A(m,R)
x≡r (q)

∑
y∈A(n,R)
y≡s (q)

1 =
1

q2

∑
x∈A(m,R)
y∈A(n,R)

1 +O

(
P 2

logP

)

whenever R ≤ m,n ≤ P , and hence by Lemma 8.3 we have∑
x∈A(m,R)
y∈A(n,R)

e

(
a0x

k + · · ·+ aky
k

q

)
= q−2S(q, a)

∑
x∈A(m,R)
y∈A(n,R)

1 +O

(
q2P 2

logP

)

= q−2S(q, a)ρ

(
logm

logR

)
ρ

(
log n

logR

)
mn + E1,

where E1 � q2P 2/ logP . Now let B = A(P,R)×A(P,R), and write 1B for the character-
istic function of B. Then by taking

cx,y = e

(
a0x

k + · · ·+ aky
k

q

)
1B(x, y) and F (x, y) = e(β0x

k + · · ·+ βky
k)

in Lemma 8.2 we find that

f(α;P,R) =
∑

1≤x,y≤P
cx,yF (x, y) = S0 − S1 + S2, (8.4)

where

S0 =
∑

x,y∈A(P,R)

e

(
a0x

k + · · ·+ aky
k

q

)(
e(β0P

k + · · ·+ βky
k) + e(β0x

k + · · ·+ βkP
k)
)
,

S1 =
∑

x,y∈A(P,R)

e

(
a0x

k + · · ·+ aky
k

q

)
e(β0P

k + · · ·+ βkP
k),

and

S2 =

∫ P

0

∫ P

0

∂2

∂γ∂ν

(
e(β0γ

k + · · ·+ βkν
k)
) ∑
x∈A(γ,R)
y∈A(ν,R)

e

(
a0x

k + · · ·+ aky
k

q

)
dν dγ.
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From our observations above, we see immediately that

S1 = q−2S(q, a)P 2ρ(1/η)2e(β0P
k + · · ·+ βkP

k) +O

(
q2P 2

logP

)
. (8.5)

We next observe that, by equation (8.13) of Wooley [13], one has

∑
x∈A(m,R)

e

(
a0x

k + · · ·+ aky
k

q

)
= q−1S(q, a; y)mρ

(
logm

logR

)
+O

(
qP

logP

)
, (8.6)

where

S(q, a; y) =
∑

1≤x≤q
e

(
a0x

k + a1x
k−1y + · · ·+ aky

k

q

)
.

If we write S0 = S3 + S4, then by (8.6) we have

S3 =
∑

x,y∈A(P,R)

e

(
a0x

k + · · ·+ aky
k

q

)
e(β0P

k + · · ·+ βky
k)

= q−1ρ(1/η)P
∑

y∈A(P,R)

S(q, a; y)e(β0P
k + · · ·+ βky

k) +O

(
qP 2

logP

)
,

and then by partial summation

S3 = q−1P ρ(1/η)T (P ) e(β0P
k + · · ·+ βkP

k)

− q−1P ρ(1/η)

∫ P

R

T (ν)
∂

∂ν

(
e(β0P

k + · · ·+ βkν
k)
)
dν +O

(
qP 2

logP

)
,

where

T (ν) =
∑

y∈A(ν,R)

S(q, a; y).

But on using the obvious analogue of (8.6) we find that

T (ν) = q−1S(q, a) νρ

(
log ν

logR

)
+O

(
q2P

logP

)
,

and since α ∈ N(q, a) we have

∂

∂ν

(
e(β0P

k + · · ·+ βkν
k)
)
�W/P.

Therefore we obtain

S3 = Qρ(1/η)P e(β0P
k + · · ·+ βkP

k)−QI(P ) +O

(
qP 2W

logP

)
, (8.7)

where Q = q−2S(q, a)ρ(1/η)P and

I(γ) =

∫ P

R

ν ρ

(
log ν

logR

)
∂

∂ν

(
e(β0γ

k + · · ·+ βkν
k)
)
dν.
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Integration by parts yields

I(γ) = ρ(1/η)P e(β0γ
k + · · ·+ βkP

k)

−
∫ P

R

e(β0γ
k + · · ·+ βkν

k)
∂

∂ν

(
νρ

(
log ν

logR

))
dν +O(R),

but

∂

∂ν

(
νρ

(
log ν

logR

))
= ρ

(
log ν

logR

)
+

1

logR
ρ′
(

log ν

logR

)
= ρ

(
log ν

logR

)
+O

(
1

logP

)
,

since ρ′(x) � 1. Thus we have

I(γ) = ρ(1/η)P e(β0γ
k + · · ·+ βkP

k)

−
∫ P

R

e(β0γ
k + · · ·+ βkν

k) ρ

(
log ν

logR

)
dν + E2(γ),

(8.8)

where E2(γ) � P/ logP , so it follows from (8.7) that

S3 = Q

∫ P

R

ρ

(
log ν

logR

)
e(β0P

k + · · ·+ βkν
k) dν +O

(
qP 2W

logP

)
. (8.9)

Moreover, an identical argument shows that

S4 = Q

∫ P

R

ρ

(
log γ

logR

)
e(β0γ

k + · · ·+ βkP
k) dγ +O

(
qP 2W

logP

)
. (8.10)

We now deal with S2. A simple calculation shows that

∂2

∂γ∂ν

(
e(β0γ

k + · · ·+ βkν
k)
)
�W 2/P 2.

when |βi| ≤WP−k, and it follows easily from the calculation at the beginning of the proof
that

S2 =

∫ P

R

∫ P

R

∂2

∂γ∂ν

(
e(β0γ

k + · · ·+ βkν
k)
)
q−2S(q, a) ρ

(
log γ

logR

)
ρ

(
log ν

logR

)
γν dγ dν

+ O

(
q2P 2W 2

logP

)
.

After interchanging the order of differentiation and integration, we can write

S2 = q−2S(q, a)

∫ P

R

γ ρ

(
log γ

logR

)
I ′(γ) dγ +O

(
q2P 2W 2

logP

)
,

and on integrating by parts we get

S2 = q−2S(q, a)

(
P ρ(1/η) I(P )−

∫ P

R

I(γ) ρ

(
log γ

logR

)
dγ

)
+O

(
q2P 2W 2

logP

)
.

Then from (8.8) we finally obtain

S2 = q−2S(q, a)w(β) + E3,
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where

E3 = q−2S(q, a)ρ(1/η)2P 2e(β0P
k + · · ·+ βkP

k)

− Q

∫ P

R

ρ

(
log ν

logR

)
e(β0P

k + · · ·+ βkν
k) dν

− Q

∫ P

R

ρ

(
log γ

logR

)
e(β0γ

k + · · ·+ βkP
k) dγ +O

(
q2P 2W 2

logP

)
,

and the lemma follows on recalling (8.4), (8.5), (8.9), and (8.10).

9. A Multidimensional Analogue of Waring’s Problem

Here we establish Theorem 4 by a fairly straightforward application of the Hardy-
Littlewood method. Let P be a large positive number, and put R = P η, where η ≤ η0(ε, k).
Let F (α) be as in the previous section, and write f(α) = f(α;P,R). Further, put
s = t+ 2u+ v, and let

Rs(n) =

∫
Tk+1

F (α)tf(α)2u+ve(−α · n) dα.

Then we have Ws(n, P ) ≥ Rs(n), so it suffices to obtain a lower bound for Rs(n). We
dissect Tk+1 into major and minor arcs as follows. Recalling the notation of Theorem 3,
define

m = m1/2 and M = Tk+1 \m.

We take

t = (k + 1)2, u =

[
7

3
k2 log k +

5

3
k2 log log k + 6k2

]
, and v =

[
∆u

σ1(k)

]
+ 1,

where ∆u is as in Theorem 2 and σ1(k) is as in Corollary 3.1. A simple calculation shows
that v � k2, and hence

s =
14

3
k2 log k +

10

3
k2 log log k +O(k2).

On applying the aforementioned theorem and corollary, we find that∫
m

|F (α)|t|f(α)|2u+vdα � P 2t sup
�∈m

|f(α)|v
∫
Tk+1

|f(α)|2udα

� P 2s−k(k+1)−δ (9.1)

for some δ > 0, since ∆u < vσ1(k). Thus it remains to deal with the major arcs.
When (q, a0, . . . , ak) = 1, define

M(q, a) = {α ∈ Tk+1 : |qαi − ai| ≤ P 1/2−kRk (0 ≤ i ≤ k)}, (9.2)

so that

M =
⋃

1≤a0,...,ak≤q≤P 1/2Rk+1

(q,a0,...,ak)=1

M(q, a).



MULTIPLE EXPONENTIAL SUMS OVER SMOOTH NUMBERS 37

It is a simple exercise to show that the M(q, a) are pairwise disjoint. On recalling the
notation of the previous section, we can record the following major arc approximation for
F (α).

Lemma 9.1. Suppose that α ∈ M(q, a), and write βi = αi − ai/q. Then one has

F (α)− q−2S(q, a)v(β) � P 3/2+ε.

Proof. This follows immediately from Lemma 8.1, together with (9.2).

The following estimates for S(q, a), v(β), and w(β) are essentially immediate from the
work of Arkhipov, Karatsuba, and Chubarikov [2].

Lemma 9.2. Whenever (q, a0, . . . , ak) = 1, we have

S(q, a) � q2−1/k+ε.

Proof. This follows easily from [2], Lemma II.8, on recalling standard divisor function
estimates.

Lemma 9.3. One has

v(β) � P 2(1 + P k(|β0|+ · · ·+ |βk|))−1/k

and

w(β) � P 2(1 + P k(|β0|+ · · ·+ |βk|))−1/k.

Proof. The first estimate follows from [2], Lemma II.2, on making a change of variable, and
the second follows in a similar manner (see the comment in the proof of [13], Lemma 8.6)
on noting that ρ(log γ/ logR) � 1 and is decreasing for R ≤ γ ≤ P .

We now use the information contained in the above lemmata to prune back to a very
thin set of major arcs on which f(α) can be suitably approximated. Specifically, let W be
a parameter at our disposal, and recall the definition of N(q, a) given in (8.2). Further, let

N =
⋃

1≤a0,...,ak≤q≤W
(q,a0,...,ak)=1

N(q, a). (9.3)

We have the following result, which is closely analogous to [13], Lemma 9.2.

Lemma 9.4. If t is an integer with t ≥ (k + 1)2, then one has∫
M

|F (α)|t dα� P 2t−k(k+1)

and ∫
M\N

|F (α)|t dα�W−σP 2t−k(k+1)

for some σ > 0.

Proof. When α ∈ M(q, a), we have by Lemma 9.1 that

F (α)t − V (α)t �
(
P (3/2+ε)

)t
+ P 3/2+ε|V (α)|t−1, (9.4)
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and the proof now follows the argument of Wooley [13], Lemma 9.2, employing our Lemma
9.2 together with the estimate

v(β) � P 2

k∏
i=0

(1 + P k|βi|)−1/k(k+1),

which is immediate from Lemma 9.3.

On making a trivial estimate for f(α), it follows directly from Lemma 9.4 that∫
M\N

|F (α)|t|f(α)|2u+v dα� W−σP 2s−k(k+1) (9.5)

for some σ > 0, so it suffices to deal with the pruned major arcs N. When α ∈ N(q, a), we
have by Lemma 8.4 that

f(α)2u+v −W (α)2u+v �
(
q2P 2W 2

logP

)2u+v

+
q2P 2W 2

logP
|W (α)|2u+v−1,

where

W (α) = W (α; q, a) = q−2S(q, a)w(β) and βi = αi − ai/q.

On combining this with (9.4) and recalling the definition of N, we find that∫
N

F (α)tf(α)2u+v dα =

∫
N

V (α)tW (α)2u+v dα+O(P 2s−k(k+1)(logP )−δ)

for some δ > 0, provided that W is chosen to be a suitably small power of logP .
Now let

S(q) =
∑

1≤a0,...,ak≤q
(q,a0,...,ak)=1

(q−2S(q, a))se

(
−a0n0 − · · · − aknk

q

)
,

S(n, P ) =
∑
q≤W

S(q),

and

S(n) =
∞∑
q=1

S(q).

Notice that by Lemma 9.2 we have S(q) � qk+1−s/k+ε, whence

S(n) � 1 and S(n)−S(n, P ) � P−δ

for some δ > 0, provided that s ≥ (k + 1)2. Further, let

J(n, P ) =

∫
B(P )

v(β)tw(β)2u+ve(−β · n) dβ,

where

B(P ) = [−WP−k,WP−k]k+1,
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and put

J(n) =

∫
Rk+1

v(β)tw(β)2u+ve(−β · n) dβ.

Then when s ≥ (k + 1)2, it follows easily from Lemmata 9.2 and 9.3 that

J(n) � P 2s−k(k+1)

and ∑
1≤q≤P 1/2+ε

|S(q)||J(n)− J(n, P )| � P 2s−k(k+1)(logP )−δ

for some δ > 0. Combining these observations, we find that∫
N

F (α)tf(α)2u+ve(−α · n) dα = S(n)J(n) +O(P 2s−k(k+1)(logP )−δ) (9.6)

for some δ > 0, again provided that W is a sufficiently small power of logP . The singular
integral J(n) and the singular series S(n) require further analysis.

Lemma 9.5. Suppose that s ≥ (k + 1)2, and fix real numbers µ0, . . . , µk with the property
that the system (1.7) has a non-singular real solution with 0 < ηi, ξi < 1. Then there exists
a positive number δ′ = δ′(s, k,µ) such that, whenever

|nj − P kµj| < δ′P k (0 ≤ j ≤ k)

and P is sufficiently large, one has

J(n) � P 2s−k(k+1).

Proof. After a change of variables, we have

J(n) = P 2s−k(k+1)

∫
Rk+1

∫
B
T (γ,ν) e

(
k∑
j=0

βj(φj(γ,ν)− µj + δj)

)
dγ dν dβ,

where

B = [0, 1]2t × [R/P, 1]4u+2v,

T (γ,ν) =

s∏
i=t+1

ρ

(
logPγi
logR

)
ρ

(
logPνi
logR

)
, (9.7)

φj(γ,ν) = γk−j1 νj1 + · · ·+ γk−js νjs ,

and where |δj | ≤ δ′ for each j. Notice that (η, ξ) is contained in B for P sufficiently large.
Now let

S(t0, . . . , tk) = {(γ,ν) ∈ B : φj(γ,ν)− µj + δj = tj (0 ≤ j ≤ k)},
so that

J(n) = P 2s−k(k+1)

∫
Rk+1

∫
C

∫
S(t0,...,tk)

T (γ,ν) e(β0t0 + · · ·+ βktk) dS(t) dt dβ,
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where C ⊂ Rk+1. Since (η, ξ) ∈ B, we see that C contains a neighborhood of (δ0, . . . , δk)
and hence contains the origin when δ′ is sufficiently small. Thus after k+ 1 applications of
Fourier’s Integral Theorem (see for example Davenport [5]) we obtain

J(n) = P 2s−k(k+1)

∫
S(0)

T (γ,ν) dS(0).

Now, for δ′ sufficiently small, the implicit function theorem shows that S(0) is a space of
dimension 2s−k−1 with positive (2s−k−1)-dimensional measure, and the lemma follows
on noting that T (γ,ν) � 1 for R/P ≤ γ, ν ≤ 1.

It remains to deal with p-adic solubility considerations and hence to obtain a lower bound
for the singular series S(n).

Lemma 9.6. The function S(q) is multiplicative.

Proof. By [2], Lemma II.4, one has S(qr, a) = S(q, rk−1a)S(r, qk−1a) whenever (q, r) = 1,
and the result now follows by a standard argument.

For each prime p, write

σ(p) =
∞∑
h=0

S(ph).

Whenever s ≥ (k + 1)2 one finds using Lemmata 9.2 and 9.6 that

S(n) =
∏
p

σ(p) (9.8)

and that there exists a constant C(k) such that

1

2
≤

∏
p>C(k)

σ(p) ≤ 3

2
. (9.9)

Hence it remains to deal with small primes. Let Mn(q) denote the number of solutions of
the system of congruences

xk−j1 yj1 + · · ·+ xk−js yjs ≡ nj (mod q) (0 ≤ j ≤ k).

Lemma 9.7. One has ∑
d|q

S(d) = qk+1−2sMn(q).

Proof. By the orthogonality of the additive characters modulo q, one has

Mn(q) =
1

qk+1

q∑
r0=1

· · ·
q∑

rk=1

(S(q, r))s e (−(r · n)/q) .

Now on writing d = q/(q, r0, . . . , rk) and ai = rid/q we obtain

Mn(q) =
1

qk+1

∑
d|q

∑
1≤a0,...,ak≤d
(d,a0,...,ak)=1

(q/d)2s (S(d, a))s e (−(a · n)/d) ,

and the result follows.
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We therefore have

σ(p) = lim
h→∞

ph(k+1−2s)Mn(ph), (9.10)

so to show that S(n) � 1 it suffices to obtain a suitable lower bound for Mn(ph). In
order to deduce this from the existence of non-singular p-adic solutions to (1.6), we need a
version of Hensel’s Lemma. In what follows, we write | · |p for the usual p-adic valuation,
normalized so that |p|p = p−1.

Lemma 9.8. Let ψ1, . . . , ψr be polynomials in Zp[x1, . . . , xr] with Jacobian ∆(ψ;x), and
suppose that a ∈ Zr

p satisfies

|ψj(a)|p < |∆(ψ; a)|2p (1 ≤ j ≤ r).

Then there exists a unique b ∈ Zr
p such that

ψj(b) = 0 (1 ≤ j ≤ r) and |bi − ai|p < p−1|∆(ψ; a)|p (1 ≤ i ≤ r).

Proof. This is Proposition 5.20 of Greenberg [6] with R = Zp.

Lemma 9.9. Suppose that the system (1.6) has a non-singular p-adic solution. Then there
exists an integer u = u(p) such that whenever h ≥ u one has

Mn(ph) ≥ p(h−u)(2s−k−1).

Proof. We relabel the variables by writing

(z1, . . . , z2s) = (x1, . . . , xs, y1, . . . , ys),

and let a = (a1, . . . , a2s) be a non-singular p-adic solution of (1.6). Then there exist indices
i0, . . . , ik such that ∆(ψ; ai0, . . . , aik) 6= 0, so we can find an integer u such that

|∆(ψ; ai0 , . . . , aik)|2p = p1−u > 0.

Now suppose that h ≥ u. For i /∈ {i0, . . . , ik}, choose integers wi with wi ≡ ai (mod pu),
and write vi = ai for i = i0, . . . , ik and vi = wi otherwise. Then on writing

ψj(z) = ψj(x,y) = xk−j1 yj1 + · · ·+ xk−js yjs − nj

for 0 ≤ j ≤ k, we see that

ψj(v) ≡ ψj(a) ≡ 0 (mod pu),

and hence

|ψj(v)|p ≤ p−u < |∆(ψ; vi0 , . . . , vik)|2p.

Now if h ≥ u then there are p(h−u)(2s−k−1) possible choices for the wi modulo ph. Moreover,
for any fixed choice we may regard ψj as a polynomial in the k + 1 variables zi0 , . . . , zik
after substituting zi = wi on the remaining indices. Thus for each admissible choice of w
we may apply Lemma 9.8 to obtain integers bi0 , . . . , bik such that ψj(b;w) ≡ 0 (mod ph)
for each j, whence the lemma follows.

Now by (9.10) and Lemma 9.9 we have σ(p) ≥ pu(k+1−2s) for all primes p, so on combining
this with (9.8) and (9.9) we see that S(n) � 1. Hence the proof of Theorem 4 is complete
upon recalling Lemma 9.5, together with (9.1), (9.5), and (9.6).
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10. Lines on Additive Equations

We now establish Theorems 5 and 6 by proceeding much as in the previous section. Before
embarking on the circle method, however, we need to make some preliminary observations.

Lemma 10.1. Suppose that (x,y) ∈ R2s is a solution of (1.12), and let a, b, c, and d be
arbitrary real numbers. Then (ax + by, cx + dy) is also a solution.

Proof. For 0 ≤ j ≤ k, write

Aj(x,y) =

s∑
i=1

ci(axi + byi)
k−j(cxi + dyi)

j.

Then by the binomial theorem we have for each j that

Aj(x,y) =

s∑
i=1

ci

k−j∑
r=0

(
k − j

r

)
(axi)

k−j−r(byi)r
j∑
s=0

(
j

s

)
(cxi)

j−s(dyi)s

=

k−j∑
r=0

j∑
s=0

(
k − j

r

)(
j

s

)
ak−j−rbrcj−sds

s∑
i=1

cix
k−(r+s)
i yr+si ,

and the lemma follows.

Lemma 10.2. Suppose that the system of equations (1.12) has a non-singular real solution
(η, ξ). Then we can find a non-singular real solution (η′, ξ′) such that η′i and ξ′i are nonzero
for each i.

Proof. For 0 ≤ j ≤ k, let

ψj(x,y) = c1x
k−j
1 yj1 + · · ·+ csx

k−j
s yjs,

and write (z0, . . . , z2s−1) = (x1, . . . , xs, y1, . . . , ys). Then by rearranging variables, we may
write the given real solution as (η, ξ) = (γ0, . . . , γ2s−1), where

det

(
∂ψj
∂zi

(γ)

)
0≤i,j≤k

6= 0.

Hence by using the Implicit Function Theorem as in the proof of [13], Lemma 6.2, we see
that there exists a (2s − k − 1)-dimensional neighborhood T0 of (γk+1, . . . , γ2s−1) and a
function φ : T0 → Rk+1 such that γ = (φ(w),w) is a solution of (1.12) whenever w ∈ T0.
Thus by choosing w with |wi− γi| sufficiently small for k+1 ≤ i ≤ 2s− 1, we may assume
that γ is a non-singular solution whose last 2s− k− 1 coordinates are nonzero. Moreover,
a simple calculation shows that at most two of the remaining ηi and at most two of the
remaining ξi are zero and that either ηi or ξi is nonzero for every i. In particular, when
s ≥ 5, there is some i for which ηiξi 6= 0. Now let

b = min{|ηi/ξi| : ηiξi 6= 0} and c = min{|ξi/ηi| : ηiξi 6= 0},

and take b′ < 1
2
b and c′ < 1

2
c. Then by Lemma 10.1 we see that (η′, ξ′) is a solution

of (1.12), where η′ = η + b′ξ and ξ′ = c′η + ξ, and it is easy to check that η′i and ξ′i
are nonzero for each i. The non-singularity follows by continuity on choosing b′ and c′

sufficiently small.
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By Lemma 10.2 we may henceforth suppose that the system (1.12) has a non-singular
real solution (η, ξ) with ηi and ξi nonzero for all i, and by homogeneity we can re-scale to
ensure that 0 < |ηi|, |ξi| < 1

2
. For each i, write

η+
i = ηi +

1
2
|ηi| and η−i = ηi − 1

2
|ηi|

and

ξ+
i = ξi +

1
2
|ξi| and ξ−i = ξi − 1

2
|ξi|.

Now let P be a large positive number, put R = P η with η ≤ η0(ε, k), and let c1, . . . , cs be
nonzero integers. Throughout this section, the implicit constants arising in our analysis
may depend on c1, . . . , cs and on the real solution (η, ξ). We define the exponential sums

Fi(α) =
∑

η−i P<x≤η+i P

∑
ξ−i P<y≤ξ+i P

e(ci(α0x
k + α1x

k−1y + · · ·+ αky
k))

and

fi(α) =
∑

η−i P<x≤η+i P
|x|∈A(P,R)

∑
ξ−i P<y≤ξ+i P
|y|∈A(P,R)

e(ci(α0x
k + α1x

k−1y + · · ·+ αky
k)).

Further, write s = t+ 2u+ v and define

F(α) =

t∏
i=1

Fi(α) and G(α) =

s∏
i=t+1

fi(α).

Finally, let

Rs(P ) =

∫
Tk+1

F(α)G(α) dα.

Then we have Ns(P ) ≥ Rs(P ), so to prove Theorem 5 it suffices to obtain a lower bound
for Rs(P ). We dissect Tk+1 into major and minor arcs as follows. Write c = max |ci| and
X = cP 1/2Rk+1, and define

M =
⋃

1≤a0,...,ak≤q≤X
(q,a0,...,ak)=1

M(q, a),

where

M(q, a) = {α ∈ Tk+1 : |qαi − ai| ≤ P 1/2−kRk (0 ≤ i ≤ k)},
and put m = Tk+1 \M. As before, it is easily seen that the M(q, a) are disjoint

Lemma 10.3. Whenever α ∈ m, one has ciα ∈ m1/2. Moreover,

sup
�∈m

|fi(α)| � P 2−σ1(k)+ε,

where σ1(k) is as in Corollary 3.1.

Proof. Suppose that α ∈ m and that |ciαjq − aj | ≤ P 1/2−kRk for 0 ≤ j ≤ k, where q ∈ N,
aj ∈ Z, and (q, a0, . . . , ak) = 1. Then one has∣∣∣∣αj − aj

ciq

∣∣∣∣ ≤ P 1/2−kRk

|ci|q
(0 ≤ j ≤ k),
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so on writing

d = (ci, a0, . . . , ak), a′j =
|ci|aj
cid

, and q′ =
|ci|q
d
,

we see that ∣∣∣∣αj − a′j
q′

∣∣∣∣ ≤ P 1/2−kRk

q′d
(0 ≤ j ≤ k),

so we must have cq ≥ q′ > cP 1/2Rk+1 and hence q > P 1/2Rk+1. Thus ciα ∈ m1/2. The
second assertion now follows on recalling the remark at the end of Section 7 and noting
that we may replace αj by −αj as needed so that our sums are over positive integers.

As in the previous section, we take

t = (k + 1)2, u =

[
7

3
k2 log k +

5

3
k2 log log k + 6k2

]
, and v =

[
∆u

σ1(k)

]
+ 1,

where ∆u is as in Theorem 2 and σ1(k) is as in Corollary 3.1. Then by Hölder’s inequality
and a change of variables we obtain∫

m

|F(α)G(α)| dα � P 2t+v(2−σ1+ε)

t+2u∏
i=t+1

(∫
Tk+1

|fi(α)|2udα
)1/2u

� P 2s−k(k+1)−δ (10.1)

for some δ > 0, since ∆u < vσ1(k). Thus it remains to deal with the major arcs.
Recalling the notation of the previous section, we define Si(q, a) = S(q, cia),

vi(β) =

∫ η+i P

η−i P

∫ ξ+i P

ξ−i P
e(ci(β0γ

k + β1γ
k−1ν + · · ·+ βkν

k)) dγ dν,

and Vi(α) = q−2Si(q, a)vi(α− a/q) for α ∈ M(q, a). Further, we define the pruned major
arcs N as in the previous section using (8.2) and (9.3), again with W a suitable power of
logP . Finally, write

wi(β) =

∫ η+i P

η−i P

∫ ξ+i P

ξ−i P
ρ

(
log γ

logR

)
ρ

(
log ν

logR

)
e(ci(β0γ

k + β1γ
k−1ν + · · ·+ βkν

k)) dγ dν

and Wi(α) = q−2Si(q, a)wi(α− a/q) for α ∈ N(q, a). The next several lemmas are simple
adaptations of the corresponding results in the previous section.

Lemma 10.4. When α ∈ M(q, a), one has

Fi(α)− Vi(α) � P 3/2+ε,

and when α ∈ N(q, a), one has

fi(α)−Wi(α) � q2P 2W 2

logP
.

Proof. These estimates follow by making trivial modifications in the arguments of Lemmata
8.1 and 8.4, respectively.
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Lemma 10.5. Whenever (q, a0, . . . , ak) = 1, we have

Si(q, a) � q2−1/k+ε.

Proof. Put di = (q, ci). Then by Lemma 9.2 we have

Si(q, a) = d2
iS(q/di, cia/di) � d

1/k
i q2−1/k+ε �c q

2−1/k+ε,

as required.

Lemma 10.6. One has

vi(β) � P 2(1 + P k(|β0|+ · · ·+ |βk|))−1/k

and

wi(β) � P 2(1 + P k(|β0|+ · · ·+ |βk|))−1/k.

Proof. The argument is identical to the proof of Lemma 9.3.

Lemma 10.7. If t is an integer with t ≥ (k + 1)2, then one has∫
M

|Fi(α)|t dα� P 2t−k(k+1) (10.2)

and ∫
M\N

|Fi(α)|t dα� W−σP 2t−k(k+1) (10.3)

for some σ > 0.

Proof. The result follows as in Lemma 9.4 on using Lemmata 10.4, 10.5, and 10.6 in place
of the corresponding results in the previous section.

Once again, Lemma 10.7, together with (10.1), allows us to focus attention on the pruned
major arcs N. Let

S(q) =
∑

1≤a0,...,ak≤q
(q,a0,...,ak)=1

q−2s
s∏
i=1

Si(q, a),

S(P ) =
∑
q≤X

S(q), and S =

∞∑
q=1

S(q).

Again we have S(q) � qk+1−s/k+ε, and hence S � 1 and S−S(P ) � P−δ for some δ > 0,
provided that s ≥ (k + 1)2. Further, let

J(P ) =

∫
B(P )

t∏
i=1

vi(β)

s∏
i=t+1

wi(β) dβ,

where B(P ) = [−WP−k,WP−k]k+1, and put

J =

∫
Rk+1

t∏
i=1

vi(β)

s∏
i=t+1

wi(β) dβ.



46 SCOTT T. PARSELL

Then when s ≥ (k + 1)2, we have by Lemmata 10.5 and 10.6 that J � P 2s−k(k+1) and∑
1≤q≤cP 1/2+ε

|S(q)||J − J(P )| � P 2s−k(k+1)(logP )−δ.

for some δ > 0. Thus, by employing standard arguments based on Lemmata 10.4, 10.5,
and 10.6, we obtain ∫

N

F(α)G(α) dα = SJ +O(P 2s−k(k+1)(logP )−δ) (10.4)

for some δ > 0.

Lemma 10.8. Whenever s ≥ (k + 1)2 and P is sufficiently large, one has

J � P 2s−k(k+1).

Proof. By a change of variables, we find that

J = P 2s−k(k+1)

∫
Rk+1

∫
B
T (γ,ν) e

(
k∑
j=0

βjφj(γ,ν)

)
dγ dν dβ,

where

B = [η−1 , η
+
1 ]× · · · × [η−s , η

+
s ]× [ξ−1 , ξ

+
1 ]× · · · × [ξ−s , ξ

+
s ],

φj(γ,ν) = c1γ
k−j
1 νj1 + · · ·+ csγ

k−j
s νjs ,

and where T (γ,ν) is as in (9.7). Now let

S(t0, . . . , tk) = {(γ,ν) ∈ B : φj(γ,ν) = tj (0 ≤ j ≤ k)},
so that

J = P 2s−k(k+1)

∫
Rk+1

∫
C

∫
S(t0,...,tk)

T (γ,ν) e(β0t0 + · · ·+ βktk) dS(t) dt dβ,

where C ⊂ Rk+1. Since (η, ξ) ∈ B, we see that C contains a neighborhood of the origin,
whence after k + 1 applications of Fourier’s Integral Theorem we obtain

J = P 2s−k(k+1)

∫
S(0)

T (γ,ν) dS(0),

and the result follows as in the proof of Lemma 9.5.

Lemma 10.9. The function S(q) is multiplicative.

Proof. This is identical to the proof of Lemma 9.6.

Whenever s ≥ (k + 1)2 one finds using Lemma 10.9 that

S =
∏
p

σ(p), where σ(p) =

∞∑
h=0

S(ph),

and that there exists a constant C(k) such that

1

2
≤

∏
p>C(k)

σ(p) ≤ 3

2
.
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Let M(q) denote the number of solutions of the system of congruences

c1x
k−j
1 yj1 + · · ·+ csx

k−j
s yjs ≡ 0 (mod q) (0 ≤ j ≤ k).

Lemma 10.10. One has ∑
d|q

S(d) = qk+1−2sM(q).

Proof. This is identical to the proof of Lemma 9.7.

It follows that

σ(p) = lim
h→∞

ph(k+1−2s)M(ph),

so again to show that S � 1 it suffices to show that M(ph) ≥ p(h−u)(2s−k−1) for p ≤ C(k),
and this follows exactly as in the argument of Lemma 9.9. Hence the proof of Theorem 5
is complete on assembling (10.1), (10.3), and (10.4) and recalling Lemma 10.8.

In order to deduce Theorem 6, we need some additional observations.

Lemma 10.11. Let (x,y), (x′,y′) ∈ Z2s be such that (x1, . . . , xs) = 1. Then xt + y and
x′t+ y′ parameterize the same line if and only if

x′ = qx and y′ = y + rx

for some integers q and r with q 6= 0.

Proof. First suppose that x′ = qx and y′ = y + rx for some integers q and r with q 6= 0.
Then one has

xt+ y = x′
(
t− r

q

)
+ y′ and x′t+ y′ = x(qt+ r) + y,

so the two lines are identical. Conversely, suppose that the two lines are the same. By
taking t = 0 on the line x′t + y′, we see that there exists t1 such that y′ = xt1 + y, and
then by taking t = 1 we find that there exists t2 such that x′ + y′ = xt2 + y and hence
x′ = (t2− t1)x. Moreover, the condition (x1, . . . , xs) = 1 implies that t1 and t2 are distinct
integers, and this completes the proof.

Now let Rs(P, d) denote the number of solutions of (1.12) counted by Rs(P ) for which
(x1, . . . , xs) = d. Further, let N ′

s(P ) denote the number of solutions counted by Ns(P ) for
which (x1, . . . , xs) = 1 and 1 ≤ y1 ≤ |x1|. The following estimate will be useful when d is
large.

Lemma 10.12. One has

Rs(P, d) �
P 2s−k(k+1)

d2
.

Proof. Consider a solution (x,y) counted by Rs(P, d). Since xs−1 and xs each have d as a
divisor, the number of possible choices for xs−1, ys−1, xs, and ys is at most P 2(P/d)2. Given
such a choice, the number of possibilities for the remaining variables is∫

Tk+1

(
t∏
i=1

Fi(α)

s−2∏
i=t+1

fi(α)

)
e(α ·m) dα,
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where mj = cs−1x
k−j
s−1y

j
s−1 + csx

k−j
s yjs, and thus

Rs(P, d) �
P 4

d2

∫
Tk+1

t∏
i=1

|Fi(α)|
s−2∏
i=t+1

|fi(α)| dα.

The lemma now follows by dissecting Tk+1 into major and minor arcs and using (10.1) and
(10.2).

We can now complete the proof of Theorem 6.

Proof of Theorem 6. Define an equivalence relation on the set of solutions to (1.12) by
writing (x,y) ∼ (x′,y′) whenever xt+ y and x′t+ y′ define the same line. Thus we need
a lower bound for the number of equivalence classes.

Let Ns(P,Q, d) be the number of solutions of (1.12) with

x ∈ BP, y ∈ CQ, and (x1, . . . , xs) = d,

where

B = [η−1 , η
+
1 ]× · · · × [η−s , η

+
s ] and C = [ξ−1 , ξ

+
1 ]× · · · × [ξ−s , ξ

+
s ].

Then the solutions counted by Rs(P, d) and Ns(P/d, P, 1) are in bijective correspondence,
and Lemma 10.11 shows that two solutions (x,y) and (x′,y′) counted by Ns(P/d, P, 1) are
equivalent if and only if x = x′ and y − y′ = rx for some integer r. Then since

|x1| ≥
P

τd
and |y1 − y′1| ≤ P,

where τ = 2/|η1|, we see that each equivalence class contains at most τd members counted
by Ns(P/d, P, 1). Moreover, Lemma 10.1 allows us to map each equivalence class to a
solution counted by N ′

s(P ), and Lemma 10.11 shows that this map is injective. Thus we
see that

Rs(P, d) = Ns(P/d, P, 1) ≤ τdN ′
s(P ). (10.5)

Now let D be a parameter at our disposal. Since any two solutions counted by N ′
s(P )

represent distinct equivalence classes, we have by (10.5) that∑
d≤D

Rs(P, d) ≤ τD2N ′
s(P ) = τD2Ls(P ).

Thus by Lemma 10.12 there exist positive constants γ1 and γ2 such that

γ1P
2s−k(k+1) ≤ Rs(P ) ≤ τD2Ls(P ) +

∑
d>D

(
γ2P

2s−k(k+1)

d2

)

for P sufficiently large, and hence we have

Ls(P ) ≥ P 2s−k(k+1)

τD2

(
γ1 −

γ2

D

)
.

The theorem now follows on taking D = 2γ2/γ1.
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