ON SIMULTANEOUS DIAGONAL INEQUALITIES, II

SCOTT T. PARSELL

1. Introduction

In this paper we continue the investigation begun in [11]. Let $\lambda_{1}, \ldots, \lambda_{s}$ and μ_{1}, \ldots, μ_{s} be real numbers, and define the forms

$$
\begin{aligned}
& F(\mathbf{x})=\lambda_{1} x_{1}^{3}+\cdots+\lambda_{s} x_{s}^{3} \\
& G(\mathbf{x})=\mu_{1} x_{1}^{2}+\cdots+\mu_{s} x_{s}^{2}
\end{aligned}
$$

Further, let τ be a positive real number. Our goal is to determine conditions under which the system of inequalities

$$
\begin{equation*}
|F(\mathbf{x})|<\tau, \quad|G(\mathbf{x})|<\tau \tag{1.1}
\end{equation*}
$$

has a non-trivial integral solution. As has frequently been the case in work on systems of diophantine inequalities (see for example Brüdern and Cook [6] and Cook [7]), we were forced in [11] to impose a condition requiring certain coefficient ratios to be algebraic. A recent paper of Bentkus and Götze [4] introduced a method for avoiding such a restriction in the study of positive-definite quadratic forms, and these ideas are in fact flexible enough to be applied to other problems. In particular, Freeman [10] was able to adapt the method to obtain an asymptotic lower bound for the number of solutions of a single diophantine inequality, thus finally providing the expected strengthening of a classical theorem of Davenport and Heilbronn [9]. The purpose of the present note is to apply these new ideas to the system of inequalities (1.1).

Write $|\mathbf{x}|=\max \left(\left|x_{1}\right|, \ldots,\left|x_{s}\right|\right)$, and let $N(P)$ denote the number of integral solutions of the system (1.1) satisfying $|\mathbf{x}| \leq P$. We establish the following result.
Theorem 1. Suppose that $s \geq 13$, and let $\lambda_{1}, \ldots, \lambda_{s}$ and μ_{1}, \ldots, μ_{s} be real numbers such that for some i and j both of the ratios $\lambda_{i} / \lambda_{j}$ and μ_{i} / μ_{j} are irrational. Then one has

$$
N(P) \gg P^{s-5}
$$

provided that
(i) the form $F(\mathbf{x})$ has at least $s-4$ variables explicit,
(ii) the form $G(\mathbf{x})$ has at least $s-5$ variables explicit, and
(iii) the system of equations $F(\mathbf{x})=G(\mathbf{x})=0$ has a non-singular real solution.

In [11], we actually provided a more quantitative conclusion, in which the parameter τ in (1.1) was replaced by an explicit function of $|\mathbf{x}|$. Specifically, it was shown that when the coefficients of F and G are algebraic then under the conditions of Theorem 1 the system

$$
\begin{equation*}
|F(\mathbf{x})|<|\mathbf{x}|^{-\sigma_{1}}, \quad|G(\mathbf{x})|<|\mathbf{x}|^{-\sigma_{2}} \tag{1.2}
\end{equation*}
$$

[^0]has at least on the order of $P^{s-5-\sigma_{1}-\sigma_{2}}$ integer solutions in the box $|\mathbf{x}| \leq P$, provided that $\sigma_{1}+\sigma_{2}<1 / 12$. Results of this nature do not appear to be obtainable in the current state of knowledge without the restriction to algebraic coefficients. The reason is that the permissible size of $\sigma_{1}+\sigma_{2}$ is determined by the amount of "excess" savings one generates on the minor arcs, but the Bentkus-Götze-Freeman method produces minor arc estimates of the form $o\left(P^{s-5}\right)$ without giving any further indication of the actual order of magnitude.

Our proof of Theorem 1 is modeled on the paper of Freeman [10]. As usual, the main challenge is to handle the minor arcs. We first seek to demonstrate that large Weyl sums yield good rational approximations to the coefficients of F and G. This is essentially a theorem of R. Baker [1] (see also [2] and [3]), but we require a slightly sharper version, which we establish in $\S 2$. Then in $\S 3$ we are able to apply a two-dimensional version of Freeman's argument, combined with the methods of [11], to complete the proof. It should be noted that much of the analysis underlying the results quoted from [11] dates to the work of Wooley [13], [14] on simultaneous additive equations.

The author is grateful to Eric Freeman for alerting him to the work of Bentkus and Götze [4], for supplying a preprint of his own paper [10], and for helpful discussions of these important new ideas.

2. Diophantine Approximation Via Large Weyl Sums

As usual, we adopt the notation $e(z)=e^{2 \pi i z}$. From a result of Baker [1], we know that whenever the exponential sum

$$
F(\boldsymbol{\alpha})=\sum_{1 \leq x \leq P} e\left(\alpha_{3} x^{3}+\alpha_{2} x^{2}\right)
$$

is large, one obtains good simultaneous rational approximations to the coefficients α_{2} and α_{3}. Unfortunately, the bound for the denominator of these approximations fails by a factor of P^{ε} to allow us to initiate a minor arc analysis along the lines of Freeman [10]. Therefore we provide the following slight refinement, in the spirit of [10], Lemma 2.

Lemma 2.1. Let ε be a positive real number, and suppose that P is sufficiently large in terms of ε. Suppose that $|F(\boldsymbol{\alpha})| \geq \gamma^{1 / 8} P$, where $P^{-1 / 64} \leq \gamma \leq 1$. Then there is a positive integer q, integers a_{2} and a_{3} satisfying $\left(q, a_{2}, a_{3}\right)=1$, and absolute constants c_{0}, c_{2}, and c_{3}, such that

$$
q \leq c_{0} \gamma^{-65}, \quad\left|q \alpha_{2}-a_{2}\right| \leq c_{2} \gamma^{-2} P^{-2+\varepsilon}, \quad \text { and } \quad\left|q \alpha_{3}-a_{3}\right| \leq c_{3} \gamma^{-9} P^{-3}
$$

Proof. We follow Baker's argument fairly closely, deviating only as necessary to save the factor of P^{ε} in the bound for q. In view of the conclusions of the lemma, we may assume throughout that ε is sufficiently small. We have by a trivial extension of Freeman [10], Lemma 2, that there exists a positive integer r, an integer b, and absolute constants C_{0} and C_{3} satisfying

$$
\begin{equation*}
(b, r)=1, \quad r<C_{0} \gamma^{-64}, \quad \text { and } \quad\left|r \alpha_{3}-b\right|<C_{3} \gamma^{-8} P^{-3} \tag{2.1}
\end{equation*}
$$

Applying Weyl differencing, we find that

$$
|F(\boldsymbol{\alpha})|^{2} \leq \sum_{|h|<P}|S(h)|,
$$

where

$$
\begin{equation*}
S(h)=S(h ; \boldsymbol{\alpha})=\sum_{1 \leq x \leq P-h} e\left(3 h \alpha_{3} x^{2}+\left(3 h^{2} \alpha_{3}+2 h \alpha_{2}\right) x\right) . \tag{2.2}
\end{equation*}
$$

Trivially, we have $|S(h)| \leq P$ for all h, so

$$
\sum_{|h| \leq \frac{1}{5} \gamma^{1 / 4} P}|S(h)| \leq\left(\frac{2}{5} \gamma^{1 / 4} P+1\right) P \leq \frac{1}{2} \gamma^{1 / 4} P^{2}
$$

for P sufficiently large, and thus

$$
\begin{equation*}
\sum_{\frac{1}{5} \gamma^{1 / 4} P<|h|<P}|S(h)| \geq|F(\boldsymbol{\alpha})|^{2}-\frac{1}{2} \gamma^{1 / 4} P^{2} \geq \frac{1}{2} \gamma^{1 / 4} P^{2} \tag{2.3}
\end{equation*}
$$

Now the number of divisors of r is $O\left(r^{1 / 256}\right)$, so on using (2.1) and (2.3) we find that

$$
\frac{1}{2} \gamma^{1 / 4} P^{2} \leq \sum_{d \mid r} \sum_{\substack{\frac{1}{5} \gamma^{1 / 4} P<|h|<P \\(h, r)=d}}|S(h)| \leq c \gamma^{-1 / 4} \sum_{\substack{\frac{1}{5} \gamma^{1 / 4} P<|h|<P \\(h, r)=D}}|S(h)|
$$

for some D dividing r and some absolute constant c. It follows that

$$
\sum_{\substack{\frac{1}{5} \gamma^{1 / 4} P<|h|<P \\(h, r)=D}}|S(h)| \geq(2 c)^{-1} \gamma^{1 / 2} P^{2}
$$

Moreover, on putting $C=(8 c)^{-1}$, we see that the terms for which $|S(h)| \leq C \gamma^{1 / 2} P$ contribute at most $2 C \gamma^{1 / 2} P^{2}$ to this sum, so on writing

$$
\mathcal{B}=\left\{h: \frac{1}{5} \gamma^{1 / 4} P<|h|<P,(h, r)=D, \text { and }|S(h)|>C \gamma^{1 / 2} P\right\}
$$

we find that

$$
\sum_{h \in \mathcal{B}}|S(h)| \geq 2 C \gamma^{1 / 2} P^{2}
$$

and it follows that

$$
\begin{equation*}
\operatorname{card}(\mathcal{B}) \geq 2 C \gamma^{1 / 2} P \tag{2.4}
\end{equation*}
$$

Choose any $h \in \mathcal{B}$, and put $b_{3}=3 h b$. Then since $|h| \leq P$ we have by (2.1) that

$$
\left|3 h \alpha_{3} r-b_{3}\right|<3 C_{3} \gamma^{-8} P^{-2}<\frac{1}{64} P^{-1}
$$

for P sufficiently large. Furthermore, we have

$$
|S(h)|>C \gamma^{1 / 2} P>r^{1 / 2} P^{\varepsilon / 6}
$$

on choosing ε sufficiently small. Therefore, we may apply Baker's final coefficient lemma ([2], Lemma 4.6) to obtain an approximation to the coefficient of the linear term in (2.2). Writing $d=\left(r, b_{3}\right)$, we can find a positive integer $t \leq 8$ such that

$$
\begin{equation*}
t d^{-1}\left|3 h \alpha_{3} r-b_{3}\right| \leq C^{-2} \gamma^{-1} P^{-2+\varepsilon} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|t r d^{-1}\left(3 h^{2} \alpha_{3}+2 h \alpha_{2}\right)\right\| \leq C^{-2} \gamma^{-1} P^{-1+\varepsilon} \tag{2.6}
\end{equation*}
$$

We note for future reference that $D \mid d$ and $D \leq d \leq 3 D$.

Now write $x=x(h)=t h D^{-1}$ and $\theta=2 r \alpha_{2}$. On writing z for the nearest integer to $x \theta$, we find using (2.5) and (2.6) that

$$
\begin{aligned}
|x \theta-z| & \leq d D^{-1}\left\|2 t r d^{-1} h \alpha_{2}\right\| \\
& \leq 3 \| \operatorname{trd^{-1}(3h^{2}\alpha _{3}+2h\alpha _{2})\| +3htd^{-1}\| 3h\alpha _{3}r\| \leq 6C^{-2}\gamma ^{-1}P^{-1+\varepsilon }} .
\end{aligned}
$$

Put $X=8 P$ and $\zeta=6 C^{-2} \gamma^{-1} P^{-1+\varepsilon}$. As h runs through the set \mathcal{B}, the value of D is fixed, and there are only 8 possible values for t, so (2.4) shows that we generate R distinct, non-zero values of x, where

$$
\begin{equation*}
R \geq \frac{1}{8} \operatorname{card}(\mathcal{B}) \geq \frac{1}{4} C \gamma^{1 / 2} P \tag{2.7}
\end{equation*}
$$

Then for P sufficiently large we have $R>24 \zeta X$, so by Lemma 14 of Birch and Davenport [5] (see also Baker [2], Lemma 5.2) it must be the case that the ratio z / x is constant as h runs through \mathcal{B}. Therefore, we can find integers u and v, independent of h, with $(u, v)=1$, such that $z / x=u / v$ for all values of x and corresponding values of z. Further, we can ensure that v is positive. Since u and v are coprime, we must have $v \mid x$ for all x. But

$$
\begin{equation*}
\frac{1}{5} \gamma^{1 / 4} P D^{-1} \leq|x| \leq 8 P D^{-1} \tag{2.8}
\end{equation*}
$$

so it follows that $R \leq 16 P(v D)^{-1}$ and hence by (2.7) we see that

$$
\begin{equation*}
v D \leq 64 C^{-1} \gamma^{-1 / 2} \tag{2.9}
\end{equation*}
$$

Now for all $h \in \mathcal{B}$ we have by (2.7), (2.8), and (2.9) that

$$
|v \theta-u|=v|x|^{-1}|x \theta-z| \leq 5 v D \gamma^{-1 / 4} P^{-1} \zeta \leq 1920 C^{-3} \gamma^{-7 / 4} P^{-2+\varepsilon}
$$

Finally, we set $q=2 v r, a_{2}=u$, and $a_{3}=2 v b$. Then (2.1) and (2.9) give

$$
\begin{equation*}
q \leq 2 v D r \leq c_{0} \gamma^{-64-\frac{1}{2}} \tag{2.10}
\end{equation*}
$$

where we have set $c_{0}=128 C_{0} C^{-1}$. Furthermore, we have

$$
\begin{equation*}
\left|q \alpha_{2}-a_{2}\right|=|v \theta-u| \leq c_{2} \gamma^{-7 / 4} P^{-2+\varepsilon} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|q \alpha_{3}-a_{3}\right|=2 v\left|r \alpha_{3}-b\right|<2 C_{3} v \gamma^{-8} P^{-3} \leq c_{3} \gamma^{-8-\frac{1}{2}} P^{-3} \tag{2.12}
\end{equation*}
$$

where $c_{2}=1920 C^{-3}$ and $c_{3}=48 C_{3} C^{-1}$. If $\left(q, a_{3}, a_{2}\right) \neq 1$, then we may divide out the common factor and still retain the inequalities (2.10), (2.11), and (2.12) above. The lemma therefore follows on recalling that $\gamma \leq 1$.

We remark that Lemma 2.1 sharpens Baker's theorem only in cases where $|F(\boldsymbol{\alpha})|$ is nearly of order P, which is the situation that arises in our application. Baker's original theorem gives good results for sums as small as $P^{3 / 4+\varepsilon}$, this fact having been thoroughly exploited in our earlier paper [11].

3. The Davenport-Heilbronn Method

We now recall the analytic set-up introduced in [11]. We may assume (after rearranging variables) that the first m of the μ_{i} are zero, that the last n of the λ_{i} are zero, and that the remaining $h=s-m-n$ indices have both λ_{i} and μ_{i} nonzero. Then when $s \geq 13$ we have by conditions (i) and (ii) of Theorem 1 that

$$
\begin{equation*}
0 \leq m \leq 5, \quad 0 \leq n \leq 4, \quad \text { and } \quad h \geq 4 \tag{3.1}
\end{equation*}
$$

Furthermore, we may suppose that $\lambda_{I} / \lambda_{J}$ and μ_{I} / μ_{J} are irrational, where

$$
I=m+h-2 \quad \text { and } \quad J=m+h-1 .
$$

We may also assume that $\tau=1$, since this case may then be applied to the forms $\tau^{-1} F(\mathbf{x})$ and $\tau^{-1} G(\mathbf{x})$ to deduce the general result. When P and R are positive numbers, let

$$
\mathcal{A}(P, R)=\{n \in[1, P] \cap \mathbb{Z}: p \mid n, p \text { prime } \Rightarrow p \leq R\}
$$

denote the set of R-smooth numbers up to P. Write $\boldsymbol{\alpha}=\left(\alpha_{3}, \alpha_{2}\right)$, and define generating functions

$$
F_{i}(\boldsymbol{\alpha})=F_{i}(\boldsymbol{\alpha} ; P)=\sum_{1 \leq x \leq P} e\left(\lambda_{i} \alpha_{3} x^{3}+\mu_{i} \alpha_{2} x^{2}\right)
$$

and

$$
f_{i}(\boldsymbol{\alpha})=f_{i}(\boldsymbol{\alpha} ; P, R)=\sum_{x \in \mathcal{A}(P, R)} e\left(\lambda_{i} \alpha_{3} x^{3}+\mu_{i} \alpha_{2} x^{2}\right) .
$$

It will also be convenient to write

$$
g_{i}\left(\alpha_{3}\right)=f_{i}\left(\alpha_{3}, 0\right) \quad \text { and } \quad H_{i}\left(\alpha_{2}\right)=F_{i}\left(0, \alpha_{2}\right) .
$$

Further, we set $R=P^{\eta}$. From now on, whenever a statement involves ε and R, it is intended to mean that the statement holds for all $\varepsilon>0$, provided that η is sufficiently small in terms of ε. Finally, we assume throughout that P is chosen to be sufficiently large.

According to Davenport [8], there exists a real-valued even kernel function K of one real variable such that

$$
\begin{equation*}
K(\alpha) \ll \min \left(1,|\alpha|^{-2}\right) \tag{3.2}
\end{equation*}
$$

and

$$
\hat{K}(t)=\int_{-\infty}^{\infty} e(\alpha t) K(\alpha) d \alpha \begin{cases}=0, & \text { if }|t| \geq 1 \tag{3.3}\\ \in[0,1], & \text { if }|t| \leq 1 \\ =1, & \text { if }|t| \leq \frac{1}{3}\end{cases}
$$

for all real numbers t. We set

$$
\mathcal{K}(\boldsymbol{\alpha})=K\left(\alpha_{3}\right) K\left(\alpha_{2}\right) .
$$

Now let $N(P)$ be the number of solutions of the system (1.1) satisfying

$$
x_{i} \in \mathcal{A}(P, R) \quad(i=1, \ldots, m+h-3)
$$

and

$$
1 \leq x_{i} \leq P \quad(i=m+h-2, \ldots, s)
$$

By using (3.3), one finds that

$$
\begin{equation*}
N(P) \geq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathcal{F}(\boldsymbol{\alpha}) \mathcal{G}(\boldsymbol{\alpha}) \mathcal{H}(\boldsymbol{\alpha}) \mathcal{K}(\boldsymbol{\alpha}) d \boldsymbol{\alpha} \tag{3.4}
\end{equation*}
$$

where

$$
\mathcal{F}(\boldsymbol{\alpha})=\prod_{i=1}^{m+h-3} f_{i}(\boldsymbol{\alpha}), \quad \mathcal{H}(\boldsymbol{\alpha})=\prod_{i=m+h-2}^{m+h} F_{i}(\boldsymbol{\alpha}), \quad \text { and } \quad \mathcal{G}(\boldsymbol{\alpha})=\prod_{i=m+h+1}^{s} F_{i}(\boldsymbol{\alpha}) .
$$

Before describing the dissection of the plane into major, minor, and trivial arcs, we need the following two lemmas, which are straightforward extensions of the ideas of Freeman [10], Lemmas 3 and 4.

Lemma 3.1. Suppose that S_{j} and T_{j} are fixed real numbers satisfying

$$
0<S_{j} \leq 1 \leq T_{j} \quad(j=2,3)
$$

Then whenever $\{i, j\}=\{2,3\}$, one has

$$
\lim _{P \rightarrow \infty}\left(\sup _{\substack{S_{j} \leq\left|\alpha_{j}\right| \leq T_{j} \\ \alpha_{i} \in \mathbb{R}}} \frac{\left|F_{I}(\boldsymbol{\alpha} ; P) F_{J}(\boldsymbol{\alpha} ; P)\right|}{P^{2}}\right)=0 .
$$

Proof. Let us first suppose that $i=2$ and $j=3$. For notational convenience, we write $\left(\alpha_{3}, \alpha_{2}\right)=(\alpha, \beta)$. If the result fails to hold, then we can find $\varepsilon>0$, a sequence of positive real numbers $\left\{P_{n}\right\}$ tending to ∞, and a sequence of ordered pairs $\left\{\boldsymbol{\alpha}_{n}\right\}=\left\{\left(\alpha_{n}, \beta_{n}\right)\right\}$ with

$$
S_{3} \leq\left|\alpha_{n}\right| \leq T_{3} \quad \text { and } \quad \beta_{n} \in \mathbb{R} \quad\left(n \in \mathbb{Z}^{+}\right)
$$

such that

$$
\left|F_{I}\left(\boldsymbol{\alpha}_{n} ; P_{n}\right) F_{J}\left(\boldsymbol{\alpha}_{n} ; P_{n}\right)\right| \geq \varepsilon P_{n}^{2}
$$

for all positive integers n. On making a trivial estimate, it follows that for each n one has

$$
\left|F_{i}\left(\boldsymbol{\alpha}_{n} ; P_{n}\right)\right| \geq \varepsilon P_{n} \quad(i=I, J) .
$$

Whenever n is large enough so that $P_{n} \geq \varepsilon^{-512}$, we may apply Lemma 2.1 with $\gamma=\varepsilon^{8}$. Thus we obtain integers $q_{i n}$ and $a_{i n}$ satisfying

$$
\begin{equation*}
q_{i n} \leq c_{0} \varepsilon^{-520} \quad \text { and } \quad\left|\lambda_{i} \alpha_{n} q_{i n}-a_{i n}\right| \leq c_{3} \varepsilon^{-72} P_{n}^{-3} \quad(i=I, J) \tag{3.5}
\end{equation*}
$$

It follows that for n sufficiently large one has

$$
a_{i n} \leq c_{0}\left|\lambda_{i}\right| T_{3} \varepsilon^{-520}+c_{3} \varepsilon^{-72} \ll 1,
$$

and hence there are only finitely many possible 4 -tuples $\left(a_{I n}, q_{I n}, a_{J n}, q_{J n}\right)$. So there must be a 4 -tuple $\left(a_{I}, q_{I}, a_{J}, q_{J}\right)$ that occurs for infinitely many of the α_{n}. The compactness of [S_{3}, T_{3}] then ensures that among these α_{n} we can find a subsequence $\left\{\alpha_{n_{\ell}}\right\}$ converging to a non-zero limit α_{0}. We have

$$
\left|\lambda_{I} \alpha_{n_{\ell}} q_{I}-a_{I}\right| \leq c_{3} \varepsilon^{-72} P_{n_{\ell}}^{-3} \quad \text { and } \quad\left|\lambda_{J} \alpha_{n_{\ell}} q_{J}-a_{J}\right| \leq c_{3} \varepsilon^{-72} P_{n_{\ell}}^{-3}
$$

for each ℓ, so on letting $\ell \rightarrow \infty$ we find that $\lambda_{I} / \lambda_{J}=a_{I} q_{J} /\left(a_{J} q_{I}\right)$, contradicting the assumption that $\lambda_{I} / \lambda_{J}$ is irrational.

For the case where $i=3$ and $j=2$, we repeat the same argument except that in (3.5) we use the second inequality of Lemma 2.1 instead of the third and eventually contradict the irrationality of μ_{I} / μ_{J}.

Lemma 3.2. There exist positive, real-valued functions $S_{j}(P)$ and $T_{j}(P)$, depending only on $\lambda_{I}, \lambda_{J}, \mu_{I}$, and μ_{J}, such that

$$
\lim _{P \rightarrow \infty} S_{j}(P)=0 \quad \text { and } \quad \lim _{P \rightarrow \infty} T_{j}(P)=\infty \quad(j=2,3)
$$

and whenever $\{i, j\}=\{2,3\}$ one has

$$
\lim _{P \rightarrow \infty}\left(\sup _{\substack{S_{j}(P) \leq \mid \alpha_{j} j \leq T_{j}(P) \\ \alpha_{i} \in \mathbb{R}}} \frac{\left|F_{I}(\boldsymbol{\alpha} ; P) F_{J}(\boldsymbol{\alpha} ; P)\right|}{P^{2}}\right)=0
$$

Proof. Fix $j=2$ or 3 . Then for every positive integer m, Lemma 3.1 tells us that there is a real number $P_{m}=P_{m, j}$ such that

$$
\frac{\left|F_{I}(\boldsymbol{\alpha} ; P) F_{J}(\boldsymbol{\alpha} ; P)\right|}{P^{2}} \leq \frac{1}{m} \quad \text { whenever } \quad P \geq P_{m} \quad \text { and } \quad \frac{1}{m} \leq\left|\alpha_{j}\right| \leq m
$$

and we may clearly assume that the sequence $\left\{P_{m}\right\}$ is non-decreasing. Now when P satisfies $P_{m} \leq P<P_{m+1}$, we define

$$
S_{j}(P)=\frac{1}{m} \quad \text { and } \quad T_{j}(P)=m
$$

It follows easily that

$$
\frac{\left|F_{I}(\boldsymbol{\alpha} ; P) F_{J}(\boldsymbol{\alpha} ; P)\right|}{P^{2}} \leq \frac{1}{m} \quad \text { when } \quad P \geq P_{m} \quad \text { and } \quad S_{j}(P) \leq\left|\alpha_{j}\right| \leq T_{j}(P)
$$

and this suffices to complete the proof.
We are now ready to describe the dissection of the plane that will be used to evaluate the integral (3.4). Let $T_{j}(P)$ be as in Lemma 3.2, and define the trivial arcs by

$$
\mathfrak{t}=\left\{\boldsymbol{\alpha}:\left|\alpha_{3}\right|>T_{3}(P) \text { or }\left|\alpha_{2}\right|>T_{2}(P)\right\} .
$$

Write

$$
\lambda=18 \max _{1 \leq i \leq s}\left|\lambda_{i}\right| \quad \text { and } \quad \mu=18 \max _{1 \leq i \leq s}\left|\mu_{i}\right|,
$$

and define

$$
\mathfrak{M}=\left\{\boldsymbol{\alpha}:\left|\alpha_{3}\right| \leq \lambda^{-1} P^{-2} \text { and }\left|\alpha_{2}\right| \leq \mu^{-1} P^{-1}\right\}
$$

to be the major arc. Finally, the minor arcs are given by

$$
\mathfrak{m}=\mathbb{R}^{2} \backslash(\mathfrak{t} \cup \mathfrak{M})
$$

As in [11] and [13], we have for any set $\mathfrak{n} \in \mathbb{R}^{2}$ that

$$
\begin{equation*}
\int_{\mathfrak{n}}|\mathcal{F}(\boldsymbol{\alpha}) \mathcal{G}(\boldsymbol{\alpha})| d \boldsymbol{\alpha} \ll \int_{\mathfrak{n}}\left|f_{i}(\boldsymbol{\alpha})\right|^{h-3}\left|g_{j}\left(\alpha_{3}\right)\right|^{m}\left|H_{k}\left(\alpha_{2}\right)\right|^{n} d \boldsymbol{\alpha} \tag{3.6}
\end{equation*}
$$

for some i, j, and k satisfying

$$
\begin{equation*}
m+1 \leq i \leq m+h, \quad 1 \leq j \leq m, \quad \text { and } \quad m+h+1 \leq k \leq s \tag{3.7}
\end{equation*}
$$

With the abbreviations

$$
f=\left|f_{i}(\boldsymbol{\alpha})\right|, \quad g=\left|g_{j}\left(\alpha_{3}\right)\right|, \quad \text { and } \quad H=\left|H_{k}\left(\alpha_{2}\right)\right|,
$$

we find using (3.1) that

$$
\begin{equation*}
f^{h-3} g^{m} H^{n} \ll P^{s-13}\left(f^{10}+f^{6} H^{4}+g^{6} H^{4}+f^{4} g^{6}\right) . \tag{3.8}
\end{equation*}
$$

In order to employ this decomposition, we need several mean value estimates. In each one, we are required to obtain the full savings of P^{5} with fewer than 13 variables present, as the minor-arc bounds for F_{I} and F_{J} stemming from Lemma 3.2 do not provide quantifiable gains over the trivial estimates.
Lemma 3.3. Suppose that i, j, and k satisfy (3.7) and that $m+h-2 \leq \ell \leq m+h$. Then for any $t>8 / 3$ and any unit square $\mathcal{U}=[c, c+1] \times[d, d+1]$, one has
(i) $\int_{\mathcal{U}}\left|F_{\ell}(\boldsymbol{\alpha})\right|^{t}\left|f_{i}(\boldsymbol{\alpha})\right|^{10} d \boldsymbol{\alpha} \ll P^{t+5}$,
(ii) $\int_{\mathcal{U}}\left|F_{\ell}(\boldsymbol{\alpha})\right|^{t}\left|f_{i}(\boldsymbol{\alpha})\right|^{6}\left|H_{k}\left(\alpha_{2}\right)\right|^{4} d \boldsymbol{\alpha} \ll P^{t+5}$,
(iii) $\int_{\mathcal{U}}\left|F_{\ell}(\boldsymbol{\alpha})\right|^{t}\left|g_{j}\left(\alpha_{3}\right)\right|^{6}\left|H_{k}\left(\alpha_{2}\right)\right|^{4} d \boldsymbol{\alpha} \ll P^{t+5}$,
(iv) $\int_{\mathcal{U}}\left|F_{\ell}(\boldsymbol{\alpha})\right|^{t}\left|f_{i}(\boldsymbol{\alpha})\right|^{4}\left|g_{j}\left(\alpha_{3}\right)\right|^{6} d \boldsymbol{\alpha} \ll P^{t+5}$.

Proof. We dissect \mathcal{U} into major and minor arcs as follows. Let

$$
\mathcal{M}(q, a, b)=\left\{\boldsymbol{\alpha} \in \mathcal{U}:\left|\lambda_{\ell} \alpha_{3} q-a\right|<P^{-9 / 4} \text { and }\left|\mu_{\ell} \alpha_{2} q-b\right|<P^{-5 / 4}\right\}
$$

and write

$$
\mathcal{M}=\bigcup_{\substack{0 \leq a, b \leq q<P^{3 / 4} \\(q, a, b)=1}} \mathcal{M}(q, a, b)
$$

Then by Baker [2], Theorem 5.1, one has $\left|F_{\ell}(\boldsymbol{\alpha})\right| \ll P^{3 / 4+\varepsilon}$ whenever $\boldsymbol{\alpha} \in \mathcal{U} \backslash \mathcal{M}$. Therefore, by part (i) of [11], Lemma 5 (see also [14], Theorem 2), one has

$$
\int_{\mathcal{U} \backslash \mathcal{M}}\left|F_{\ell}(\boldsymbol{\alpha})\right|^{t}\left|f_{i}(\boldsymbol{\alpha})\right|^{10} d \boldsymbol{\alpha} \ll P^{(3 / 4+\varepsilon) t} \cdot P^{17 / 3+\varepsilon} \ll P^{t+5}
$$

for ε sufficiently small, since $t>8 / 3$. Similar minor arc bounds for the integrals in (ii)-(iv) follow by using parts (ii)-(iv) of [11], Lemma 5.

For the major arcs, we again illustrate the argument by focusing attention on the integral in part (i). By Hölder's inequality, one has

$$
\int_{\mathcal{M}}\left|F_{\ell}(\boldsymbol{\alpha})\right|^{t}\left|f_{i}(\boldsymbol{\alpha})\right|^{10} d \boldsymbol{\alpha} \leq\left(\int_{\mathcal{M}}\left|F_{\ell}(\boldsymbol{\alpha})\right|^{3 t} d \boldsymbol{\alpha}\right)^{1 / 3}\left(\int_{\mathcal{U}}\left|f_{i}(\boldsymbol{\alpha})\right|^{15} d \boldsymbol{\alpha}\right)^{2 / 3}
$$

and the result now follows on making a change of variables and using [11], Lemma 8, together with part (v) of [11], Lemma 5. Estimates for the major arc integrals in (ii)-(iv) follow in an identical manner on using parts (vi)-(viii) of [11], Lemma 5.

The trivial arcs are now quite easy to handle. Since

$$
\begin{equation*}
|\mathcal{H}(\boldsymbol{\alpha})| \leq\left|F_{I}(\boldsymbol{\alpha})\right|^{3}+\left|F_{J}(\boldsymbol{\alpha})\right|^{3}+\left|F_{K}(\boldsymbol{\alpha})\right|^{3}, \tag{3.9}
\end{equation*}
$$

where $K=m+h$, we find from (3.2), (3.6), (3.8), and Lemma 3.3 that

$$
\int_{\mathfrak{t}}|\mathcal{F}(\boldsymbol{\alpha}) \mathcal{G}(\boldsymbol{\alpha}) \mathcal{H}(\boldsymbol{\alpha}) \mathcal{K}(\boldsymbol{\alpha})| d \boldsymbol{\alpha} \ll\left(T_{2}(P)^{-1}+T_{3}(P)^{-1}\right) P^{s-5},
$$

and since $T_{j}(P) \rightarrow \infty$ we see that this is $o\left(P^{s-5}\right)$.
Let us now tackle the minor arcs. We first subdivide \mathfrak{m} into two regions. Let $S_{j}(P) \geq P^{-1}$ be as in Lemma 3.2, and put

$$
\mathfrak{m}_{1}=\left\{\boldsymbol{\alpha} \in \mathfrak{m}:\left|\alpha_{3}\right| \geq S_{3}(P) \text { or }\left|\alpha_{2}\right| \geq S_{2}(P)\right\}
$$

and $\mathfrak{m}_{2}=\mathfrak{m} \backslash \mathfrak{m}_{1}$. We know from Lemma 3.2 that

$$
\begin{equation*}
\sup _{\boldsymbol{\alpha} \in \mathfrak{m}_{1}}\left|F_{I}(\boldsymbol{\alpha}) F_{J}(\boldsymbol{\alpha})\right|=o\left(P^{2}\right) \tag{3.10}
\end{equation*}
$$

Now we need a similar result on the set \mathfrak{m}_{2}. The basic idea is that if $\boldsymbol{\alpha} \in \mathfrak{m}_{2}$ and $\left|F_{I}(\boldsymbol{\alpha})\right|$ is large, then $\lambda_{I} \alpha_{3}$ and $\mu_{I} \alpha_{2}$ have good rational approximations, yet both are already close to zero when P is large, since $S_{j}(P) \rightarrow 0$. We may therefore hope to get a contradiction by showing that $\boldsymbol{\alpha}$ must then in fact lie in the major arc. Suppose that $\boldsymbol{\alpha} \in \mathfrak{m}_{2}$ and that $\left|F_{I}(\boldsymbol{\alpha})\right| \geq \gamma^{1 / 8} P$, where

$$
\gamma=\left(\max \left\{S_{2}(P), S_{3}(P)\right\}\right)^{1 / 66}
$$

Since $S_{j}(P) \geq P^{-1}$ we have $\gamma \geq P^{-1 / 66}$, and hence Lemma 2.1 applies. Thus we obtain integers q, a_{2}, and a_{3}, with $\left(q, a_{2}, a_{3}\right)=1$, such that

$$
1 \leq q \leq c_{0} \gamma^{-65}, \quad\left|\mu_{I} \alpha_{2} q-a_{2}\right| \leq c_{2} \gamma^{-2} P^{-2+\varepsilon}, \quad \text { and } \quad\left|\lambda_{I} \alpha_{3} q-a_{3}\right| \leq c_{3} \gamma^{-9} P^{-3}
$$

It follows that

$$
\left|a_{3}\right| \leq c_{3} \gamma^{-9} P^{-3}+\left|\lambda_{I} \alpha_{3}\right| q \ll \gamma^{-9} P^{-3}+\gamma^{-65} S_{3}(P) \ll P^{-2}+S_{3}(P)^{1 / 66}
$$

and similarly

$$
\left|a_{2}\right| \leq c_{2} \gamma^{-2} P^{-2+\varepsilon}+\left|\mu_{I} \alpha_{2}\right| q \ll \gamma^{-2} P^{-2+\varepsilon}+\gamma^{-65} S_{2}(P) \ll P^{-1}+S_{2}(P)^{1 / 66}
$$

whence $a_{2}=a_{3}=0$ when P is sufficiently large. Therefore we have $\left|\alpha_{3}\right| \ll \gamma^{-9} P^{-3}$ and $\left|\alpha_{2}\right| \ll \gamma^{-2} P^{-2+\varepsilon}$. For sufficiently large P, this implies that $\boldsymbol{\alpha} \in \mathfrak{M}$ and hence gives a contradiction. We therefore conclude that

$$
\begin{equation*}
\sup _{\boldsymbol{\alpha} \in \mathfrak{m}_{2}}\left|F_{I}(\boldsymbol{\alpha})\right| \leq \gamma^{1 / 8} P=o(P) \tag{3.11}
\end{equation*}
$$

Now we are ready to complete the minor arc analysis. By (3.2) and (3.9), we have for some ℓ with $m+h-2 \leq \ell \leq m+h$ and some unit square \mathcal{U} that

$$
\int_{\mathfrak{m}}|\mathcal{F}(\boldsymbol{\alpha}) \mathcal{G}(\boldsymbol{\alpha}) \mathcal{H}(\boldsymbol{\alpha}) \mathcal{K}(\boldsymbol{\alpha})| d \boldsymbol{\alpha} \ll \sup _{\boldsymbol{\alpha} \in \mathfrak{m}}\left|F_{I}(\boldsymbol{\alpha}) F_{J}(\boldsymbol{\alpha})\right|^{1 / 8} \int_{\mathcal{U}}\left|F_{\ell}(\boldsymbol{\alpha})\right|^{11 / 4}|\mathcal{F}(\boldsymbol{\alpha}) \mathcal{G}(\boldsymbol{\alpha})| d \boldsymbol{\alpha}
$$

Therefore by (3.6), (3.8), (3.10), (3.11), and Lemma 3.3 we have

$$
\int_{\mathfrak{m}}|\mathcal{F}(\boldsymbol{\alpha}) \mathcal{G}(\boldsymbol{\alpha}) \mathcal{H}(\boldsymbol{\alpha}) \mathcal{K}(\boldsymbol{\alpha})| d \boldsymbol{\alpha} \ll \sup _{\boldsymbol{\alpha} \in \mathfrak{m}}\left|F_{I}(\boldsymbol{\alpha}) F_{J}(\boldsymbol{\alpha})\right|^{1 / 8} P^{s-21 / 4}=o\left(P^{s-5}\right)
$$

The treatment of the major arc is almost identical to that of [11], so our discussion will be somewhat brief. As usual, we must prune back to a smaller set \mathfrak{N} on which we can obtain asymptotics for the sums $f_{i}(\boldsymbol{\alpha})$. We let $W=(\log P)^{1 / 4}$ and define

$$
\mathfrak{N}=\left\{\boldsymbol{\alpha}:\left|\alpha_{3}\right| \leq W P^{-3} \text { and }\left|\alpha_{2}\right| \leq W P^{-2}\right\} .
$$

Then by using Hölder's inequality, together with Lemma 9.2 of Wooley [13] and Lemma 3.3, we find that

$$
\int_{\mathfrak{M} \backslash \mathfrak{N}}|\mathcal{F}(\boldsymbol{\alpha}) \mathcal{G}(\boldsymbol{\alpha}) \mathcal{H}(\boldsymbol{\alpha}) \mathcal{K}(\boldsymbol{\alpha})| d \boldsymbol{\alpha} \ll P^{s-5} W^{-\sigma}
$$

for some $\sigma>0$. It may be worth mentioning that Freeman [10] is able to avoid pruning entirely in his work on a single inequality. The factor of P^{ε} in our estimate for $\left\|q \alpha_{2}\right\|$ in Lemma 2.1 is what prevents us from extending the \mathfrak{m}_{2} analysis down to the boundary of \mathfrak{N} in the α_{2} direction.

When $\boldsymbol{\alpha} \in \mathfrak{N}$, we are able to approximate $F_{i}(\boldsymbol{\alpha})$ and $f_{i}(\boldsymbol{\alpha})$ by the functions

$$
v_{i}(\boldsymbol{\alpha})=\int_{0}^{P} e\left(\lambda_{i} \alpha_{3} \gamma^{3}+\mu_{i} \alpha_{2} \gamma^{2}\right) d \gamma
$$

and

$$
w_{i}(\boldsymbol{\alpha})=\int_{R}^{P} \rho\left(\frac{\log \gamma}{\log R}\right) e\left(\lambda_{i} \alpha_{3} \gamma^{3}+\mu_{i} \alpha_{2} \gamma^{2}\right) d \gamma
$$

as in [11]. Here $\rho(x)$ denotes Dickman's function (see for example Vaughan [12], chapter 12). Thus we are able to show that

$$
\int_{\mathfrak{N}} \mathcal{F}(\boldsymbol{\alpha}) \mathcal{G}(\boldsymbol{\alpha}) \mathcal{H}(\boldsymbol{\alpha}) \mathcal{K}(\boldsymbol{\alpha}) d \boldsymbol{\alpha} \sim J(P)
$$

where

$$
J(P)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\prod_{i=1}^{m+h-3} w_{i}(\boldsymbol{\alpha})\right)\left(\prod_{i=m+h-2}^{s} v_{i}(\boldsymbol{\alpha})\right) \mathcal{K}(\boldsymbol{\alpha}) d \boldsymbol{\alpha}
$$

denotes the singular integral. By arguing as in [11], we find that

$$
J(P) \gg P^{s} \int_{\mathcal{B}} \hat{K}\left(F(\boldsymbol{\gamma}) P^{3}\right) \hat{K}\left(G(\boldsymbol{\gamma}) P^{2}\right) d \boldsymbol{\gamma}
$$

where $\mathcal{B}=[R / P, 1]^{m+h-3} \times[0,1]^{n+3}$. Now by condition (iii) of Theorem 1 and the argument of Lemma 6.2 of Wooley [13], we may assume that there is a non-singular solution $\boldsymbol{\eta}$ to the equations $F=G=0$ such that $\boldsymbol{\eta}$ lies in the interior of \mathcal{B} when P is sufficiently large. By the inverse function theorem, we are then able to find a set $V \in \mathbb{R}^{2}$ containing the origin, with $\operatorname{meas}(V) \gg 1$, such that

$$
J(P) \gg P^{s} \int_{V} \hat{K}\left(z_{j} P^{3}\right) \hat{K}\left(z_{k} P^{2}\right) d \mathbf{z}
$$

It now follows from (3.3) that $J(P) \gg P^{s-5}$, and this completes the proof of Theorem 1.

References

[1] R. C. Baker, Weyl sums and diophantine approximation, J. London Math. Soc. (2) 25 (1982), 25-34.
[2] , Diophantine inequalities, Clarendon Press, Oxford, 1986.
[3] , Correction to 'Weyl sums and diophantine approximation', J. London Math. Soc. (2) 46 (1992), 202-204.
[4] V. Bentkus and F. Götze, Lattice point problems and distribution of values of quadratic forms, Ann. of Math. (2) 150 (1999), 977-1027.
[5] B. J. Birch and H. Davenport, On a theorem of Davenport and Heilbronn, Acta Math. 100 (1958), 259-279.
[6] J. Brüdern and R. J. Cook, On pairs of cubic diophantine inequalities, Mathematika 38 (1991), 250-263.
[7] R. J. Cook, Simultaneous quadratic inequalities, Acta Arith. 25 (1974), 337-346.
[8] H. Davenport, On indefinite quadratic forms in many variables, Mathematika 3 (1956), 81-101.
[9] H. Davenport and H. Heilbronn, On indefinite quadratic forms in five variables, J. London Math. Soc. 21 (1946), 185-193.
[10] D. E. Freeman, Asymptotic lower bounds for diophantine inequalities, Mathematika (to appear).
[11] S. T. Parsell, On simultaneous diagonal inequalities, J. London Math. Soc. (2) 60 (1999), 659-676.
[12] R. C. Vaughan, The Hardy-Littlewood method, second edition, Cambridge University Press, Cambridge, 1997.
[13] T. D. Wooley, On simultaneous additive equations II, J. reine angew. Math. 419 (1991), 141-198.
[14] \qquad , On simultaneous additive equations IV, Mathematika 45 (1998), 319-335.

Department of Mathematics, Texas A\&M University, College Station, Texas 77843-3368
E-mail address: parsell@alum.mit.edu

[^0]: 1991 Mathematics Subject Classification. 11D75 (11D41, 11P55).

