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ASYMPTOTIC ESTIMATES FOR RATIONAL LINEAR SPACES
ON HYPERSURFACES

SCOTT T. PARSELL

Abstract. We develop a repeated efficient differencing procedure for estimat-
ing mean values of certain multidimensional exponential sums over smooth
numbers. As a consequence, we obtain asymptotic lower bounds for the num-
ber of linear spaces of fixed dimension up to a given height lying on the hy-
persurface defined by an additive equation.

1. Introduction

The problem of counting integral points lying on the hypersurface defined by an
additive equation has occupied a prominent place in number theory over the past
century. Specifically, one often asks how large s must be in terms of k in order to
ensure that the hypersurface

(1.1) c1z
k
1 + · · · + csz

k
s = 0

contains a non-trivial integral point for all integers c1, . . . , cs. Frequently, one also
wishes to establish asymptotic estimates for the number of integral points lying
within a box as the box size tends to infinity. Subject to a local solubility hypothesis,
the ground-breaking work of Wooley [12] on Waring’s problem can be used to show
that the number of integral solutions of (1.1) in the box [−P, P ]s has the expected
order of magnitude of P s−k whenever s ≥ (1+o(1))k log k. Moreover, an asymptotic
formula for the number of solutions can be established when s ≥ (1 + o(1))k2 log k,
and in this case no local solubility hypothesis is needed (except for indefiniteness)
since a classical result of Davenport and Lewis [5] shows that k2 +1 variables suffice
to satisfy the congruence conditions.

Because of the homogeneity of (1.1), if the hypersurface in question contains one
non-trivial integral point, then it contains all scalar multiples of that point as well.
One may choose to express this by saying that the hypersurface contains a rational
linear space of projective dimension zero, and it is therefore natural to ask about
linear spaces of higher dimension. While results concerning the existence of such
spaces date to work of Brauer [4] and Birch [3], asymptotic estimates for the number
of such spaces up to a given height seem to have been considered only in recent work
of the author (see [6], [7], and [9]). If x1, . . . ,xd are linearly independent vectors
in Zs, then we are interested in determining whether the linear space of projective
dimension d − 1 spanned by these vectors is contained in (1.1). By collecting the
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coefficients of ti11 · · · tid

d for each d-tuple (i1, . . . , id) satisfying i1 + · · · + id = k, one
sees that this occurs if and only if x1, . . . ,xd satisfy the system of equations

(1.2) c1x
i1
11 · · ·x

id

1d + · · · + csx
i1
s1 · · ·x

id

sd = 0 (i1 + · · · + id = k).

We note that the number of equations in the above system is given by

(1.3) � =
(

k + d − 1
k

)
.

We shall frequently abbreviate a monomial of the shape xi1
1 · · ·xid

d by xi, and we
shall also write |i| = i1 + · · · + id. Our strategy for counting solutions of (1.2) is
to focus on solutions in which most of the variables are free of large prime factors.
Thus our main tool will be the exponential sum

f(α) = f(α; P, R) =
∑

x1,...,xd∈A(P,R)

e

⎛⎝ ∑
|i|=k

αixi

⎞⎠ ,

where e(y) = e2πiy, and where

A(P, R) = {n ∈ [1, P ] ∩ Z : p|n, p prime ⇒ p ≤ R}

denotes the set of R-smooth numbers up to P . In order to account for negative
solutions to (1.2), we let f∗(α) denote the analogue of f(α) in which the variables
x1, . . . , xd range over ±A(P, R) ∪ {0}. By orthogonality, the number of solutions
Ns,k,d(P ) of the system (1.2) with xij ∈ [−P, P ] ∩ Z satisfies

Ns,k,d(P ) ≥
∫

T�

s∏
j=1

f∗(cjα) dα,

where T� denotes the �-dimensional unit hypercube. Our aim is to show that
Ns,k,d(P ) � P sd−k� whenever s is sufficiently large in terms of k and d. This then
leads to a similar estimate for the number of linear spaces of height at most P
lying on (1.1), except that each space is counted with a weight equal to the number
of different bases. We return to the issue of counting distinct spaces later in this
section.

In order to count solutions of the system (1.2) via the Hardy-Littlewood method,
one needs upper bounds for the number of solutions of an auxiliary symmetric sys-
tem. We find it convenient to do the bulk of our analysis with the exponential sum
f(α), which restricts us for the moment to positive solutions. We let Ss,k,d(P, R)
denote the number of solutions of the system

xi
1 + · · · + xi

s = yi
1 + · · · + yi

s (|i| = k)

with xij , yij ∈ A(P, R), and we observe that

Ss,k,d(P, R) =
∫

T�

|f(α; P, R)|2sdα.

Before considering upper bounds for Ss,k,d(P, R), it is useful to derive an elementary
lower bound. Let Ss,k,d(P, R;h) denote the number of solutions of the system

s∑
m=1

(xi
m − yi

m) = hi (|i| = k)
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with xm,ym ∈ A(P, R)d, and observe that

Ss,k,d(P, R;h) =
∫

T�

|f(α; P, R)|2se(−α · h) dα ≤ Ss,k,d(P, R).

Thus, by summing over all values of h for which Ss,k,d(P, R;h) is non-zero, we find
that

|A(P, R)|2sd � P k�Ss,k,d(P, R).
If R is at least a positive power of P , then it is well known (see for example [11],
section 12.1) that A(P, R) � P , so in this case we have

(1.4) Ss,k,d(P, R) � P 2sd−k�.

By considering diagonal solutions, one also obtains the lower bound Ss,k,d(P, R) �
P sd, but the expression in (1.4) dominates whenever s > k�/d. Moreover, a heuristic
argument suggests that P 2sd−k� represents the true order of magnitude, since there
are O(P 2sd) choices for the variables and a random choice should satisfy each of
the � equations (independently) with probability O(P−k).

Thus we aim to establish estimates of the shape

(1.5) Ss,k,d(P, R) � P 2sd−k�+∆s+ε,

where ∆s = ∆s,k,d is small whenever s is sufficiently large in terms of k and d. If
the estimate (1.5) holds with R = P η whenever η is sufficiently small, we say that
∆s is an admissible exponent for (s, k, d). Our main theorem in this direction is
the following.

Theorem 1.1. Suppose that k is sufficiently large in terms of d, and write

(1.6) s0 = dk�
(

1
2 log(dk) − log log k

)
.

Then the estimate (1.5) holds with

∆s =

{
dk� e3−2s/(dk�) if 1 ≤ s ≤ s0,

� (log k)2 e3−3(s−s0)/(2dk�) if s > s0.

We now state our estimate for Ns,k,d(P ) that follows from Theorem 1.1 through
an application of the Hardy-Littlewood method.

Theorem 1.2. Suppose that k is sufficiently large in terms of d and that s ≥ s1,
where

(1.7) s1 = dk�( 4
3 log(k�) + log(dk) + 2 log log k + 8).

Further suppose that the system (1.2) has a non-singular real solution and a non-
singular p-adic solution for every prime p. Then there are positive constants C =
C(s, k, d; c) and P0 = P0(s, k, d; c) such that whenever P ≥ P0 one has

Ns,k,d(P ) ≥ CP sd−k�.

A simple counting argument shows that the number of choices for x1, . . . ,xd ∈
[−P, P ]s ∩ Zs that are linearly dependent over Q is O(P sd−s+d). Whenever s >
k�+d, as is the case in (1.7), this is of smaller order of magnitude than P sd−k�, so the
conclusion of Theorem 1.2 holds with Ns,k,d(P ) replaced by N∗

s,k,d(P ), the number
of solutions of (1.2) for which the vectors x1, . . . ,xd are linearly independent.

Heights for subspaces. In view of the preceding remark, Theorem 1.2 may be
interpreted as providing lower bounds for the number of linear spaces of bounded
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“height” lying on the hypersurface (1.1). We now aim to make this assertion some-
what more precise. First of all, we define the height of a vector x = (x1, . . . , xn) ∈
Zn to be

H(x) =
max1≤i≤n |xi|

gcd(x1, . . . , xn)
.

Notice that this height is also well defined on points viewed as elements of projective
space. Now for a subspace L ⊂ Zs with basis vectors x1, . . . ,xd, we write

H(L) = H(x1 ∧ · · · ∧ xd),

where we set n =
(

s
d

)
and identify the wedge product with its natural embedding

in Zn. If y1, . . . ,yd is another basis of L, then we have Y = XB, where X and Y
denote the s× d matrices corresponding to each basis and where B is an invertible
d × d change-of-basis matrix. Since

y1 ∧ · · · ∧ yd = (detB) x1 ∧ · · · ∧ xd,

we see that our definition of height does not depend on the basis.
Let Ns,k,d(P ) denote the number of distinct linear spaces L, with projective

dimension d − 1 and height at most P , lying on the hypersurface (1.1). If βQ(L)
denotes the number of integral bases for L with all components bounded by Q =
(P/d!)1/d, then we have

N∗
s,k,d(Q) �

∑
H(L)≤P

βQ(L) ≤
(
max
L

βQ(L)
)
Ns,k,d(P ).

The number of possibilities for the change-of-basis matrix can be estimated by
choosing a prime p with Q < p ≤ 2Q and viewing the computations over Fp. It is
then clear that βQ(L) � pd2 � Qd2

, so we have

Ns,k,d(P ) � Qsd−k�−d2
� P s−k�/d−d

whenever the conditions of Theorem 1.2 hold. This provides an estimate of the
type advertised in the title. It seems that a more sophisticated approach would be
required to obtain asymptotic formulas for Ns,k,d(P ) from the results of [9].

The author expresses his sincere thanks to Bob Vaughan and Trevor Wooley for
constant encouragement and for many helpful discussions concerning this problem
and related ideas. The author also acknowledges the useful comments of the referee.

2. Preliminary estimates

Fundamental to our iterative method is an estimate for the number of non-
singular solutions to an associated system of congruences. In order to retain ad-
equate control over the singular solutions, however, we are forced to work with
systems somewhat smaller than (1.2). We find it convenient to place the indices
i in lexicographic order, so that one writes i ≺ j if and only if there exists l with
0 ≤ l < d such that i1 = j1, . . . , il = jl and il+1 < jl+1. We temporarily think of j
as being fixed and write j1 for the multi-index (j, 0, . . . , 0). Further, let

(2.1) �j =
(

k − j + d − 1
d − 1

)
denote the number of equations in (1.2) with i � j1. It turns out that these
equations form a maximal set to which we can apply the argument in §3 for counting
singular solutions with j efficient differences.
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Suppose that fi(x) is a polynomial in t variables with t ≥ �j , and let u ∈ Z�j .
When q ∈ Nd, we again adopt the notation qi = qi1

1 · · · qid

d and further write
q = q1 · · · qd. We now define Bq(f ;u) to be the number of non-singular solutions
x ∈ (Z/qkZ)t of the system of congruences

fi(x) ≡ ui (mod qi) (i � j1, |i| = k).

By a non-singular solution, we mean a solution for which the Jacobian matrix
(∂fi/∂xl) of the left-hand side has at least one �j×�j sub-matrix whose determinant
is relatively prime to q.

Lemma 2.1. Suppose that fi ∈ Z[x1, . . . , xt], where t ≥ �j . Further let u ∈ Z�j

and q ∈ Nd, and write q = q1 · · · qd. Then one has

cardBq(f ;u) � qkt− �j
d (k−j)+εq

−j�j

1 .

Proof. We start by choosing integers ai ≡ ui (mod qi) with 1 ≤ ai ≤ qk for each i
with i � j1 and |i| = k. Since the number of prime divisors of q is O(log q/ log log q),
it follows from the main theorem of Wooley [15] and the Chinese Remainder The-
orem that the number of non-singular solutions of the system of congruences

fi(x) ≡ ai (mod qk) (i � j1, |i| = k)

is O(qk(t−�j)+ε) for each choice of a. Now the number of choices for a is qω1
1 · · · qωd

d ,
where

ωm =
∑

i�j1,|i|=k

(k − im).

Furthermore, the number of indices i with i � j1 and im = r is(
k − r − j + d − 2

d − 2

)
whenever 2 ≤ m ≤ d, (

k − r + d − 2
d − 2

)
if m = 1 and r ≥ j, and zero if m = 1 and r < j. Thus we obtain the formulas

ωm =
k−j∑
r=0

(k − r)
(

k − r − j + d − 2
d − 2

)
=

k−j∑
l=0

(l + j)
(

l + d − 2
d − 2

)
for 2 ≤ m ≤ d and

ω1 =
k∑

r=j

(k − r)
(

k − r + d − 2
d − 2

)
=

k−j∑
l=0

l

(
l + d − 2

d − 2

)
.

We now observe that

ω1 = (d − 1)
k−j∑
l=1

(
l + d − 2

l − 1

)
= (d − 1)

k−j∑
l=1

[(
l + d − 1

l − 1

)
−

(
l + d − 2

l − 2

)]
,

with the convention that
(
m
n

)
= 0 when n < 0. The latter sum telescopes to give

ω1 = (d − 1)
(

k − j + d − 1
k − j − 1

)
= 1

d (d − 1)(k − j)�j ,
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and it is easy to see that ωm = ω1 + j�j for m ≥ 2. Thus for m ≥ 2 one has

k(t − �j) + ωm = kt − k�j + k�j(1 − 1
d ) − j�j(1 − 1

d ) + j�j = kt − �j

d
(k − j),

and the lemma follows. �

Definition 2.2. When 0 ≤ j < k, we say that (Ψ) is of type (j, P, A) if
(1) The system consists of polynomials Ψi ∈ Z[z1, . . . , zd], each of total degree

k − j, indexed by the vectors i satisfying |i| = k.
(2) The coefficient of each term of degree k − j in Ψi is bounded by AP j .
(3) For each i with i � (j, 0, . . . , 0), the polynomial Ψi contains a term of degree

k − j that does not appear explicitly in any of the Ψi′ with i′ � i.

Write s0(n) for the square-free kernel of the integer n, defined to be the product
of all primes dividing n. We conclude this section by recalling an estimate for the
number of integers in an interval with a given square-free kernel.

Lemma 2.3. Suppose that X is a positive real number and n is a positive integer
such that log n � log X. Then, for every ε > 0, one has

card{y ≤ X : s0(y) = s0(n)} � Xε.

Proof. This is Lemma 2.1 of Wooley [12]. �

3. Efficient differencing

Our goal in this section is to develop an iterative method for bounding
Ss,k,d(P, R) as s increases, and it is convenient to increase s to s + �, where �
is as in (1.3), at each iteration. Moreover, within each iteration, we aim to employ
a repeated differencing process that injects new congruence information at each
stage.

We suppose throughout that k is sufficiently large in terms of d and that P
is sufficiently large in terms of k. We let Ψ be a system of type (j, P, A) for
some constant A, where 0 ≤ j < k. We further let C1, . . . , Cu be constants and
write C̃ = C1C2 · · ·Cu. For each i with |i| = k, we let Di ∈ Z[x1, . . . , xu] have
the property that Di(c) �= 0 whenever 1 ≤ |cl| ≤ Cl. Generally, the variables ε
and η denote small positive numbers whose values may change from statement to
statement. Typically, η will be chosen sufficiently small in terms of ε, and the
implicit constants in our analysis may depend at most on ε, η, s, k, and d. Since
our methods involve only a finite number of steps, all implicit constants that arise
remain under control, and the values assumed by η remain uniformly bounded away
from zero.

We let Ss,r(P, Q, R;Ψ) denote the number of solutions of the system

(3.1)
r∑

n=1

ηn(Ψi(zn, c) − Ψi(wn, c)) = Di(c)
s∑

m=1

(xi
m − yi

m) (|i| = k)

with 1 ≤ znl, wnl ≤ P , with xml, yml ∈ A(Q, R), with ηn ∈ {±1}, and with
1 ≤ cl ≤ Cl. Note that we have suppressed the dependence on k, d, C, and D for
simplicity; likewise, we shall often abbreviate Ss,k,d(P, R) by Ss(P, R).

We further write Jac(Ψ; z,w, c) for the �j × 2rd Jacobian matrix formed with
the polynomials on the left-hand side for which i � j1, and we write Jac(Ψ; z, c)
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and Jac(Ψ;w, c) for the corresponding �j × rd Jacobians. Here we think of z as
(z1, . . . , zr).

When u ∈ Zm and v ∈ Zn with m ≤ n, we write u↪→v if there exists a strictly
increasing function σ : {1, . . . , m} → {1, . . . , n} with the property that ui = vσ(i)

for each i with 1 ≤ i ≤ m. If z∗ ∈ Z�j and z∗↪→z, then we also write J(Ψ; z∗, c) for
the determinant of the �j ×�j matrix Jac(Ψ; z∗, c). Now let S̃s,r(P, Q, R;Ψ) denote
the number of solutions of (3.1) with the variables as above and additionally

(3.2) J(Ψ; z∗, c) �= 0 and J(Ψ;w∗, c) �= 0

for some z∗,w∗ ∈ Z�j with z∗↪→z and w∗↪→w.
Finally, we let Ts,r(P, Q, R, θ;Ψ) denote the number of solutions of the system

(3.3)
r∑

n=1

ηn(Ψi(zn, c) − Ψi(wn, c)) = Di(c)qi
s∑

m=1

(ui
m − vi

m) (|i| = k)

with z, w, c, and η as above, with uml, vml ∈ A(QP−θ, R), with q ∈ [P θ, P θR]d,
and with

(3.4) znl ≡ wnl (mod (q1 · · · qd)k).

We are now ready to state the fundamental lemma that provides the basis for our
efficient differencing procedure.

Lemma 3.1. Suppose that (Ψ) is a system of type (j, P, A), where �j ≤ rd, and let
θ be a parameter at our disposal. For each ε > 0, there exists η = η(ε, s, k, d) > 0
such that whenever R ≤ P η one has

Ss,r(P, Q, R;Ψ) � C̃P 2r(d−1)+�j−1Ss(Q, R) + P θ+εQ2d−1S̃s−1,r(P, Q, R;Ψ)

+ (P θR)(2s−1)d+k(rd2−�j)+εTs,r(P, Q, R, θ;Ψ).

Proof. Let S1 denote the number of solutions counted by Ss,r(P, Q, R,Ψ) for which
the rank of Jac(Ψ; z,w, c) is less than �j , and let S2 denote the number of solutions
for which Jac(Ψ; z,w, c) has rank �j . We sometimes find it convenient to write
Ψi(Z, c) as a polynomial in the variable Z = (Z1, . . . , Zd), which may then be
evaluated at any Z ∈ {z1, . . . , zr,w1, . . . ,wr}.

First of all, suppose that S1 ≥ S2, and consider a choice of z and w counted by
S1. Then the rows of the corresponding Jacobian matrix are linearly dependent, so
there exist ai ∈ Z, not all zero, such that

(3.5)
∑
i�j1

ai
∂Ψi

∂Zl

∣∣∣∣
Z=Z0

= 0

whenever Z0 ∈ {z1, . . . , zr,w1, . . . ,wr} and 1 ≤ l ≤ d. We now choose a prime
p ∈ [P, 2P ] that does not divide any coefficient of a term of maximal degree in any
of the polynomials ∂Ψi/∂Zl. The number of choices for the coefficients ai modulo
p is O(p�j−1), since one of them may be normalized to 1 in Fp. Now let i denote
the smallest index (in the lexicographic ordering defined above) for which ai is non-
zero modulo p. By condition (3) of Definition 2.2, there is an l with 1 ≤ l ≤ d
such that ∂Ψi/∂Zl contains a term of degree k − j − 1 that is not present in any
∂Ψj/∂Zl with j � i. Thus, by considering terms of degree k − j − 1, it follows that
the polynomial

∑
i�j1

ai ∂Ψi/∂Zl is not identically zero in Fp[Z1, . . . , Zd]. Hence
(3.5) shows that each zn and wn satisfy a non-trivial polynomial equation in d
variables over the field Fp, so the argument of the proof of Lemma 2 of Wooley
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[14] shows that the number of choices for z and w modulo p is O(p2r(d−1)) for each
fixed choice of the ai. Thus the total number of possibilities for z and w modulo
p is � p2r(d−1) · p�j−1 � P 2r(d−1)+�j−1. Since p ≥ P , it follows that there are
O(P 2r(d−1)+�j−1) choices for z and w over Z as well. Trivially, there are O(C̃)
choices for c and η. Now write

fc(α; Q, R) =
∑

x∈A(Q,R)d

e

⎛⎝ ∑
|i|=k

αiDi(c)xi

⎞⎠ .

Then for any fixed choice of z, w, c, and η, there is an integral vector n such that
the number of choices for x and y satisfying (3.1) is given by∫

T�

|fc(α; Q, R)|2se(α · n)dα ≤ Ss(Q, R),

where this last inequality follows on considering the underlying Diophantine equa-
tions. We therefore have

(3.6) Ss,r(P, Q, R;Ψ) ≤ 2S1 � C̃P 2r(d−1)+�j−1Ss(Q, R).

Next, suppose that S2 ≥ S1, and consider a solution counted by S2. After
relabeling variables and making appropriate sign changes, we may suppose that
Jac(Ψ; z, c) has rank �j . When z ∈ Zrd and I ⊆ {1, . . . , rd} with |I| = �j , we
define the vector zI ∈ Z�j to have ith component zσ(i), where σ(i) is the ith
element (in increasing order) of I. In particular, we have zI ↪→z. Here again we
typically think of the components of z to be ordered as (z1, . . . , zr).

We therefore have

Ss,r(P, Q, R;Ψ) �
∑

c,η,ω,I

∫
T�

Hc,η(α; P ;Ψ)H∗
c,ω,I(α; P ;Ψ)|fc(α; Q, R)|2sdα,

where

Hc,η(α; P ;Ψ) =
∑
z

e

⎛⎝ ∑
|i|=k

αi

r∑
n=1

ηnΨi(zn, c)

⎞⎠
and

H∗
c,ω,I(α; P ;Ψ) =

∑
z

J(Ψ;zI ,c) �=0

e

⎛⎝ ∑
|i|=k

αi

r∑
n=1

ωnΨi(zn, c)

⎞⎠ .

By the Cauchy-Schwarz inequality, we have

Ss,r �
(∑

c,η

∫
T�

|Hc,η(α)2fc(α)2s| dα

)1/2
⎛⎝ ∑

c,ω,I

∫
T�

|H∗
c,ω,I(α)2fc(α)2s| dα

⎞⎠1/2

,

where we have abbreviated Ss,r(P, Q, R;Ψ) and the exponential sums fc(α; Q, R),
Hc,η(α; P ;Ψ), and H∗

c,ω,I(α; P ;Ψ) in the obvious ways. It follows on considering
the underlying Diophantine equations that the first factor on the right-hand side is
bounded above by Ss,r(P, Q, R;Ψ)1/2 and hence that

(3.7) Ss,r(P, Q, R;Ψ) �
∑

I⊆{1,...,rd}
S3(I) � max

I
S3(I),
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where S3(I) is the number of solutions counted by Ss,r(P, Q, R;Ψ) for which

J(Ψ; zI , c) �= 0 and J(Ψ;wI , c) �= 0.

We now fix I for which S3(I) is maximal and further classify the solutions
counted by S3(I). Write xD(L) y if there exists d|x with d ≤ L such that x/d has
all its prime factors amongst those of y. We let S4 denote the number of solutions
counted by S3(I) for which

(3.8) xml D(P θ) J(Ψ; zI , c) or yml D(P θ) J(Ψ;wI , c)

for some m and l with 1 ≤ m ≤ s and 1 ≤ l ≤ d, and let S5 denote the number of
solutions such that (3.8) fails for all m and l.

Suppose that S4 ≥ S5, and write

S(Ψ; z, c) = {x ∈ A(Q, R) : x D(P θ) J(Ψ; zI , c)}
and

H̃c,η,l(α) =
∑
z

J(Ψ;zI ,c) �=0

∑
x∈A(Q,R)d

xl∈S(Ψ;z,c)

e

⎛⎝ ∑
|i|=k

αi

(
r∑

n=1

ηnΨi(zn, c) − Di(c)xi

)⎞⎠ .

Then by the Cauchy-Schwarz inequality we have

S4 �
∑
c,η,l

∫
T�

H̃c,η,l(α)H∗
c,η(−α)fc(α)2s−1dα

�

⎛⎝∑
c,η,l

∫
T�

|H̃c,η,l(α)2fc(α)2s−2|dα

⎞⎠1/2⎛⎝∑
c,η,l

∫
T�

|H∗
c,η(α)2fc(α)2s|dα

⎞⎠1/2

,

so on considering the underlying Diophantine equations and recalling (3.7) we find
that

(3.9) Ss,r(P, Q, R;Ψ) �
∑

g,h,l,c

V (g, h, l, c),

where V (g, h, l, c) denotes the number of solutions of the system
r∑

n=1

ηn(Ψi(zn, c) − Ψi(wn, c)) + Di(c)
s−1∑
m=1

(xi
m − yi

m) = Di(c)(ailui − bilvi)

with g|J(Ψ; zI , c) �= 0 and h|J(Ψ;wI , c) �= 0, with s0(ul) = g and s0(vl) = h, with
1 ≤ a, b ≤ P θ, with u,v ∈ [1, Q]d, with ul ≤ Q/a and vl ≤ Q/b, and with the
remaining variables as indicated in the discussion surrounding (3.1). Now write

Gc,η,g(α) =
∑
z

g|J(Ψ;zI ,c) �=0

e

⎛⎝ ∑
|i|=k

αi(η1Ψi(z1, c) + · · · + ηrΨi(zr, c))

⎞⎠
and

Gc,η,l(α) =
∑
g≤Q

Gc,η,g(α)
∑

a≤P θ

∑
u∈[1,Q]d

ul≤Q/a
s0(ul)=g

e

⎛⎝ ∑
|i|=k

αiDi(c)ailui

⎞⎠ .
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From (3.9), we find that

(3.10) Ss,r(P, Q, R;Ψ) �
∑
c,η,l

∫
T�

|Gc,η,l(α)2fc(α)2s−2| dα,

and on applying Cauchy’s inequality and interchanging the order of summation we
obtain

(3.11) |Gc,n,l(α)|2 ≤ Ec,η(α)Fc,l(α),

where
Ec,η(α) =

∑
g≤Q

|Gc,η,g(α)|2

and

Fc,l(α) =
∑
g≤Q

∣∣∣∣∣∣∣∣∣
∑

u∈[1,Q]d

s0(ul)=g

∑
a≤P θ

a≤Q/ul

e

⎛⎝ ∑
|i|=k

αiDi(c)ailui

⎞⎠
∣∣∣∣∣∣∣∣∣
2

.

After another application of Cauchy’s inequality, we deduce from Lemma 2.3 that

(3.12) Fc,l(α) �
∑
g≤Q

Qd−1+ε
∑

u∈[1,Q]d

s0(ul)=g

QP θ

ul
� Q2d−1+εP θ.

Thus, on substituting (3.11) and (3.12) into (3.10) and recalling a standard estimate
for the divisor function, we conclude that

(3.13) Ss,r(P, Q, R;Ψ) � Q2d−1P θ+εS̃s−1,r(P, Q, R;Ψ).

Finally, suppose that S5 ≥ S4, and consider a solution to (3.1) counted by S5.
Write q̃ml for the largest divisor of xml that is coprime to J(Ψ; zI , c), and write
p̃ml for the largest divisor of yml that is coprime to J(Ψ;wI , c). Since for each m
and l the condition (3.8) fails to hold, we have q̃ml > P θ and p̃ml > P θ. Moreover,
since these integers are R-smooth, we may divide out a suitable product of prime
factors to obtain integers qml dividing xml and pml dividing yml with the property
that

(3.14) P θ < qml, pml ≤ P θR

and

(3.15) (qml, J(Ψ; zI , c)) = (pml, J(Ψ;wI , c)) = 1

for each m and l with 1 ≤ m ≤ s and 1 ≤ l ≤ d. Thus we have S5 � V1, where V1

denotes the number of solutions of the system
r∑

n=1

ηn(Ψi(zn, c) − Ψi(wn, c)) = Di(c)
s∑

m=1

(qi
mui

m − pi
mvi

m) (|i| = k)

with z,w, c, η as in the discussion surrounding (3.1), with u,v ∈ A(QP−θ, R)sd,
and with q and p satisfying (3.14) and (3.15). We now write

q =
∏

1≤m≤s
1≤l≤d

qml and p =
∏

1≤m≤s
1≤l≤d

pml
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and introduce the exponential sum

Fc,η,q(α) =
∑

z∈[1,P ]rd

(q,J(Ψ;zI ,c))=1

e

⎛⎝ ∑
|i|=k

αi (η1Ψi(z1, c) + · · · + ηrΨi(zr, c))

⎞⎠ .

Then we have

(3.16) V1 ≤
∑

c,η,q,p

∫
T�

Fc,η,q(α)Fc,η,p(−α)
s∏

m=1

Fc,m(α) dα,

where
Fc,m(α) = fc(qmα; QP−θ, R)fc(−pmα; QP−θ, R),

and where we have written qα for the �-dimensional vector whose component in-
dexed by i is given by qiαi. We now let

Xc,η,m(α) = |Fc,η,q(α)2fc(qmα; QP−θ, R)2s|
and

Yc,η,m(α) = |Fc,η,p(α)2fc(pmα; QP−θ, R)2s|.
Then by interchanging the order of summation and applying Hölder’s inequality
twice in (3.16), we find that

V1 ≤
∑
q,p

s∏
m=1

(∑
c,η

∫
T�

Xc,η,m(α) dα

)1/2s (∑
c,η

∫
T�

Yc,η,m(α) dα

)1/2s

=
∑
q,p

s∏
m=1

W (P, Q, R,qm)1/2sW (P, Q, R,pm)1/2s,

where W (P, Q, R,q) denotes the number of solutions of (3.3) with z,w ∈ [1, P ]rd,
with u,v ∈ A(QP−θ, R)sd, and with

(3.17) (q1 · · · qd, J(Ψ; zI , c)) = (q1 · · · qd, J(Ψ;wI , c)) = 1.

It therefore follows from Hölder’s inequality that

V1 � (P θR)(2s−1)d

(
s∏

m=1

∑
qm

W (P, Q, R,qm)

)1/2s( s∏
m=1

∑
pm

W (P, Q, R,pm)

)1/2s

and hence

(3.18) V1 � (P θR)(2s−1)dUs,r(P, Q, R, θ;Ψ),

where Us,r(P, Q, R, θ;Ψ) denotes the number of solutions of (3.3) with c, η, z,w,u,
v as above, with q ∈ (P θ, P θR]d, and with (3.17).

It remains to impose the condition (3.4). Write

Υi(z, c, η) =
r∑

n=1

ηnΨi(zn, c),

and let Bq(u, c, η) denote the set of solutions modulo (q1 . . . qd)k of the system of
congruences

Υi(z, c, η) ≡ ui (mod qi) (|i| = k)
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satisfying (q1 · · · qd, J(Ψ; zI , c)) = 1. For each solution that is counted by
Us,r(P, Q, R, θ;Ψ), we have

Υi(z, c, η) ≡ Υi(w, c, η) (mod qi) (|i| = k),

so we can classify the solutions according to this common residue class. Let

Hq(α; z; c, η) =
∑

x∈[1,P ]rd

x≡z (mod (q1···qd)k)

e

⎛⎝ ∑
|i|=k

αiΥi(x, c, η)

⎞⎠
and

H̃q(α; c, η) =
∑
u

1≤ui≤qi

∣∣∣∣∣∣
∑

z∈Bq(u,c,η)

Hq(α; z; c, η)

∣∣∣∣∣∣
2

.

Then we have

Us,r(P, Q, R, θ;Ψ) �
∑
q,c,η

∫
T�

H̃q(α; c, η)|fc(qα; QP−θ, R)|2sdα.

By Cauchy’s inequality and Lemma 2.1, we have

H̃q(α; c, η) �
∑
u

1≤ui≤qi

(P θR)Ω+ε
∑

z∈Bq(u,c,η)

|Hq(α; z; c, η)|2,

where

Ω = d

(
krd − �j

d
(k − j)

)
− j�j = k(rd2 − �j).

After inserting this upper bound for H̃q(α; c, η), considering the underlying Dio-
phantine equations, and recalling (3.3) and (3.4), we deduce that

Us,r(P, Q, R, θ;Ψ) � (P θR)Ω+εTs,r(P, Q, R, θ;Ψ).

The lemma now follows on assembling (3.6), (3.13), and (3.18). �

When s is sufficiently large, it turns out that the second term in the estimate of
Lemma 3.1 can be eliminated. Thus we obtain the following simplification, which
will be useful in our iterative processes.

Lemma 3.2. Suppose that (Ψ) is a system of type (j, P, A), that 0 ≤ θ ≤ 1/(dk),
that s ≥ (k + 2)�, and that r ≤ �j ≤ rd. For each ε > 0, there exists η0 =
η0(ε, s, k, d) > 0 such that whenever R = P η and η < η0 one has

Ss,r(P, Q, R;Ψ) � C̃P 2r(d−1)+�j−1Ss(Q, R) + P γ+εTs,r(P, Q, R, θ;Ψ),

where Q = P 1−θ and
γ = θ[(2s − 1)d + k(rd2 − �j)].

Proof. We may clearly suppose that the second term in the estimate of Lemma
3.1 dominates, for the above estimate is certainly true otherwise. That is, we may
assume that

Ss,r(P, Q, R;Ψ) � P θ+εQ2d−1S̃s−1,r(P, Q, R;Ψ).
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Write

H∗
c,η(α; P ;Ψ) =

∑
z

e

⎛⎝ ∑
|i|=k

αi (η1Ψi(z1, c) + · · · + ηrΨi(zr, c))

⎞⎠ ,

where the summation is over all z ∈ [1, P ]rd for which Jac(Ψ; z, c) has rank �j .
Then

S̃s−1,r(P, Q, R;Ψ) =
∑
c,η

∫
T�

|H∗(α; P ;Ψ)2fc(α; Q, R)2s−2| dα,

and following two applications of Hölder’s inequality we deduce that

Ss,r � P θ+εQ2d−1

(∑
c,η

∫
T�

|H∗
c,η(α; P ;Ψ)|2dα

)1/s (
Ss,r

)1−1/s

� C̃P 2rd−�j+sθ+εQ(2d−1)s,

where we have abbreviated Ss,r(P, Q, R;Ψ) by Ss,r. We now claim that this bound
is smaller than the first term in the lemma whenever s ≥ (k + 2)� and θ ≤ 1/(dk).
By (1.4), we have Ss(Q, R) � Q2sd−k�, so it suffices to show that

P 2rd−�j+sθQ(2d−1)s � P 2r(d−1)+�j−1Q2sd−k�,

and this is equivalent to

s(2θ − 1) − �j ≤ −2r + �j − 1 − k�(1 − θ),

or
θ(2s − k�) ≤ s + 2�j − 2r − 1 − k�.

Since θ ≤ 1/(dk), it now suffices to show that

2s − k� ≤ dk(s + 2�j − 2r − 1 − k�),

and a simple calculation reveals that this indeed holds whenever the conditions
s ≥ (k + 2)� and r ≤ �j are satisfied. �

We now describe the polynomials Ψi to which we want to apply Lemma 3.1 and
verify that they satisfy the hypotheses of the lemma. To this end, we first define
the difference operator ∆j recursively by

∆1(f(z);h1) = f(z + h1) − f(z)

and
∆j+1(f(z);h1, . . . ,hj+1) = ∆1(∆j(f(z);h1, . . . ,hj);hj+1),

and we adopt the convention that ∆0(f(z)) = f(z). Next we define Ψi,j recursively
by taking Ψi,0(z) = zi and setting

Ψi,j(z;h;m) = ∆j(zi;h1(m1 · · ·md)k, . . . ,hj(m1 · · ·md)k).

We typically think of h and m as fixed and regard Ψi,j as a polynomial in z.
When h = (h1, . . . ,hj) is a j-tuple of d-dimensional vectors, we find it useful to
let h∗ denote the corresponding d-tuple of j-dimensional vectors formed by taking
the transpose of the underlying matrix, so that h∗

l = (h1l, . . . , hjl). We start
by relating our vector difference operator to the more familiar scalar one. When
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A = {i1, . . . , im} and B = {j1, . . . , jt} with A ∩ B = ∅, we write

Dt(f(z);h;A;B) = ∆t(f(z + hi1 + · · · + him
); hj1 , . . . , hjt

),

where ∆t is the one-dimensional version of the difference operator defined above.

Lemma 3.3. One has

∆j(zi;h1, . . . ,hj) =
∑

A1	···	Ad={1,...,j}

d∏
l=1

D|Al|(z
il

l ;h∗
l ;A1 ∪ · · · ∪ Al−1;Al).

Proof. We proceed by induction on j. First of all, we have

∆0(zi) = zi1
1 · · · zid

d =
d∏

l=1

D0(zil

l ; ∅; ∅).

Now suppose that the result holds with j replaced by j − 1. Then by the induction
hypothesis and the linearity of ∆1, we have

∆j(zi;h1, . . . ,hj) = ∆1(∆j−1(zi;h1, . . . ,hj−1);hj)

=
∑

A1	···	Ad={1,...,j−1}

(
d∏

l=1

fl(zl + hjl) −
d∏

l=1

fl(zl)

)
,

where
fl(z) = D|Al|(z

il ;h∗
l ;A1 ∪ · · · ∪ Al−1;Al).

Note that, for any complex numbers al and bl, one has
d∏

l=1

al −
d∏

l=1

bl =
d∑

l=1

(al − bl)
∏
m>l

am

∏
m<l

bm.

We therefore find that
d∏

l=1

fl(zl + hjl) −
d∏

l=1

fl(zl) =
d∑

l=1

D|Al|+1(z
il

l ;h∗
l ; Cl−1;Al ∪ {j}) Yl(z;h),

where we have written Cl−1 for A1 ∪ · · · ∪ Al−1, and where

Yl(z;h) =
∏
m>l

D|Am|(zim
m ;h∗

m; Cm−1 ∪ {j};Am)
∏
m<l

D|Am|(zim
m ;h∗

m; Cm−1;Am).

On writing Bl = Al ∪ {j} and Bm = Am for m �= l, we see that

∆j(zi;h1, . . . ,hj) =
d∑

l=1

∑
B1	···	Bd={1,...,j}

j∈Bl

d∏
m=1

D|Bm|(zim
m ;h∗

m;B1 ∪ · · · ∪ Bm−1;Bm),

and the result follows on summing over l. �

We are now in a position to analyze the polynomials Ψi,j defined above.

Lemma 3.4. Fix j with 0 ≤ j < k, and suppose that h1, . . . ,hj ∈ Zd and
m1, . . . ,mj ∈ Zd have the property that 0 < |hnlm

k
nl| ≤ cP whenever 1 ≤ n ≤ j

and 1 ≤ l ≤ d. Then the polynomials Ψi,j form a system of type (j, P, A), where
A = cj(k!)d+1.
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Proof. It is easy to show (see, for example, Vaughan [11, Exercise 2.1]) that the
leading term of Dt(zi;h;A;B) is

g(z) =
i!

(i − t)!

(∏
n∈B

hn

)
zi−t,

and it therefore follows from Lemma 3.3 that the terms of highest degree in the
polynomial Ψi,j(z;h;m) are given by

Gi,j(z) =
∑

A1	···	Ad={1,...,j}

(
d∏

l=1

il!
(il − |Al|)!

∏
n∈Al

hnlm
k
nl

)
z

i1−|A1|
1 · · · zid−|Ad|

d .

Conditions (1) and (2) of Definition 2.2 follow immediately. To check condition (3),
we fix i with i � j1 (so in particular i1 ≥ j) and consider the term zi1−j

1 zi2
2 · · · zid

d

arising from the choice A1 = {1, . . . , j} in the expression for Gi,j(z) above. Suppose
now that there is some i′ such that Ψi′,j(z) (and hence Gi′,j(z)) contains the term
zi1−j
1 zi2

2 · · · zid

d . If i′1 = i1, then this term must again arise from the choice A1 =
{1, . . . , j}, and it follows that i′ = i. Otherwise, we must have i′1 < i1, which
implies that i′ ≺ i. �

We now consider the effect of substituting Ψi,j(z;h;m) for Ψi(z, c) in the Fun-
damental Lemma. Suppose that 0 ≤ φj ≤ 1/(dk), and write

Mj = Pφj , Hj = PM−dk
j , and Qj = P (M1 · · ·Mj)−1,

with the convention that Q0 = P . We also set M̃j = M1 · · ·Mj and H̃j = H1 · · ·Hj ,
and we replace the conditions on c by

(3.19) 1 ≤ |hil| ≤ Hi and Mi < mil ≤ MiR

for each i and l with 1 ≤ i ≤ j and 1 ≤ l ≤ d. Finally, we take Di(m) = mi
1 · · ·mi

j .
The following lemma allows us to relate Ts,r(P, Qj , R, φj+1;Ψj) to Ss(Qj+1, R)

and Ss,w(P, Qj+1, R;Ψj+1) and hence to repeat the differencing process.

Lemma 3.5. Suppose that r ≤ 2w. For every ε > 0 there exists η0 = η0(ε, s, k, d) >
0 such that whenever R = P η and η < η0 one has

Ts,r(P, Qj , R, φj+1;Ψj) � P (2d−1−d(d−1)kφj+1)r+εH̃d
j M̃d

j+1Ss(Qj+1, R)

+ P εH
d(r−1)
j+1

(
H̃d

j+1M̃
d
j+1Ss(Qj+1, R)

)1−r/2w (
Ss,w(P, Qj+1, R;Ψj+1)

)r/2w
.

Proof. We introduce the exponential sums

La,q(α;h;m) =
∑

z∈[1,P ]d

z≡a (mod q)

e

⎛⎝ ∑
|i|=k

αiΨi,j(z;h;m)

⎞⎠ ,

Kq(α;h;m) =
∑

a∈[1,q]d

|La,q(α;h;m)|2,

and

gq(α;m) =
∑

x∈A(Qj+1,R)d

e

⎛⎝ ∑
|i|=k

αiDi(m)qixi

⎞⎠ .
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Then on considering the underlying Diophantine equations we find that

Ts,r �
∑
h,m

∑
q∈[Mj+1,Mj+1R]d

∫
T�

K(q1···qd)k(α;h;m)r|gq(α;m)|2sdα,

where the summation ranges for h and m are given by (3.19) and where we have
abbreviated Ts,r(P, Q, R, φj+1;Ψj) by Ts,r. We let U0 denote the number of solu-
tions counted by Ts,r(P, Q, R, φj+1;Ψj) for which znl = wnl for some n and l with
1 ≤ n ≤ r and 1 ≤ l ≤ d, and let U1 denote the number of solutions with znl �= wnl

for all n and l.
First suppose that U0 ≥ U1. In view of the condition (3.4), we have

U0 � P 2d−1−d(d−1)kφj+1
∑

h,m,q

∫
T�

K(q1···qd)k(α;h;m)r−1|gq(α;m)|2sdα,

so after two applications of Hölder’s inequality we find that

(3.20) Ts,r(P, Q, R, φj+1;Ψj) � P (2d−1−d(d−1)kφj+1)r+εH̃d
j M̃d

j+1Ss(Qj+1, R).

Next suppose that U1 ≥ U0, and consider a solution counted by U1. For each n
and l, (3.4) allows us to write

wnl = znl + gnl(q1 · · · qd)k,

where the gnl and ql are integers with

(3.21) 1 ≤ |gnl| ≤ Hj+1 and Mj+1 < ql ≤ Mj+1R.

Thus we see that U1 is bounded above by the number of solutions of the system

r∑
n=1

Ψi,j+1(zn;h,gn;m,q) = Di(m)qi
s∑

m=1

(ui
m − vi

m) (|i| = k),

with all the variables in the ranges described above. Now write

G(α;g;q) =
∑

z∈[1,P ]d

e

⎛⎝ ∑
|i|=k

αiΨi,j+1(z;h,g;m,q)

⎞⎠ .

Then we find after an application of Hölder’s inequality that

U1 � H
d(r−1)
j+1

∑
h,g,m,q

∫
T�

|G(α;g;q)rgq(α;m)2s|dα,

where the summation conditions are given by (3.19) and (3.21). Applying Hölder’s
inequality twice more gives

U1 � H
d(r−1)
j+1 Ss,w(P, Qj+1, R;Ψj+1)r/2w

(
P εH̃d

j+1M̃
d
j+1Ss(Qj+1, R)

)1−r/2w

,

and this, together with (3.20), completes the proof of the lemma. �
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4. Mean value theorems

We begin by deriving a simple result using only first differences. When 0 ≤ θ ≤
1/(dk), we employ the notation

M = P θ, H = PM−dk, and Q = PM−1.

Theorem 4.1. Suppose that s ≥ (k + 2)� and that ∆s ≤ k� is an admissible
exponent. Then the exponent ∆s+� = ∆s(1 − 1

dk ) is also admissible.

Proof. We take θ = 1/(dk) in the above notation. Then by Lemma 3.2 we have

Ss,�(P, P, R;Ψ0) � P 2�d−�−1Ss(P, R) + M (2s−1)d+k�(d2−1)+εTs,�(P, P, R, θ;Ψ0).

By employing the argument of the proof of Lemma 3.5, we find that

Ts,�(P, P, R, θ;Ψ0) � P d�+εMdSs(Q, R)

after making a trivial estimate and noting that H = 1. It follows that

Ss,�(P, P, R;Ψ0) � P 2�d−�−1Ss(P, R) + M2sd+k�(d2−1)+dP d�+εSs(Q, R).

Moreover, since the exponent λs = 2sd − k� + ∆s is permissible, we find after a
little calculation that

Ss+�(P, R) � Ss,�(P, P, R;Ψ0) � PΛ1+ε + PΛ2+ε,

where
Λ1 = 2(s + �)d − k� − (� + 1) + ∆s

and
Λ2 = 2(s + �)d − k� + ∆s(1 − θ).

Since ∆s ≤ k�, one sees easily that θ∆s ≤ � + 1 and hence that Λ1 ≤ Λ2. We
therefore deduce that the exponent ∆s+� = ∆s(1−θ) is admissible, as required. �

We note that the above theorem yields admissible exponents that decay roughly
like k�e−s/(dk�). Good results therefore begin to appear when s is a bit larger than
dk� log(k�), and we can improve this somewhat by employing repeated efficient
differencing. However, we are hampered by the fact that, after j differences, the
singularity issues considered in sections 2 and 3 force us to restrict attention to �j

of the � available equations. We find it convenient to introduce the notation

(4.1) Ωj = k(� − �j),

which may be thought of as a measure of the resulting loss of potential congruence
information. Our results arising from repeated differencing are summarized in the
following theorem.

Theorem 4.2. Suppose that k ≥ 2d, and let u be a positive integer with u ≥ (k+2)�.
Further suppose that ∆u ≤ k� is an admissible exponent, and let j be an integer
with 1 ≤ j ≤ k/2. For each positive integer m, we write s = u + m� and define
the numbers φ(j, s, J), θs, and ∆s recursively as follows. Given a value of ∆s−�,
we set φ(j, s, j) = 1/(dk) and evaluate φ(j, s, J − 1) successively for J = j, . . . , 2 by
setting

(4.2) φ∗(j, s, J − 1) =
1

2dk
+

(
1
2

+
ΩJ−1 − ∆s−�

2dk�J−1

)
φ(j, s, J)

and
φ(j, s, J − 1) = min{1/dk, φ∗(j, s, J − 1)}.
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Finally, we set
θs = min

1≤j≤k/2
φ(j, s, 1)

and

(4.3) ∆s = ∆s−�(1 − θs) + �(dkθs − 1).

Then ∆s is an admissible exponent for s = u + m� for all positive integers m.

Proof. Take j to be the least integer with 1 ≤ j ≤ k/2 for which φ(j, s+�, 1) = θs+�,
and write φJ = φ(j, s+�, J) for J = j, . . . , 1. By following the argument of the proof
of Theorem 6.1 in [16], we find that the minimality of j ensures that φJ < 1/(dk)
whenever J < j. We recall the notation established in section 3 and set

MJ = PφJ , HJ = PM−dk
J , and QJ = P (M1 · · ·MJ )−1

for 1 ≤ J ≤ j, with the usual convention that Q0 = P .
We prove by induction on m that the exponents ∆s defined above are admissible

for s = u + m�, where m is a non-negative integer. The m = 0 case is trivial,
since the admissibility of ∆u is a hypothesis of the theorem. Now suppose that
s = u+m�, where m ≥ 0, and that ∆s is admissible. Then when R is a sufficiently
small power of P we have Ss(P, R) � Pλs+ε, where λs = 2sd − k� + ∆s. We
need to establish that ∆s+� is admissible as well. In order to do this, we first show
inductively that

(4.4) Ts,�J
(P, QJ , R, φJ+1;ΨJ ) � P (2d−1−d(d−1)kφJ+1)�J+εH̃d

JM̃d
J+1Q

λs

J+1

for J = j − 1, j − 2, . . . , 1, 0. To establish (4.4) for J = j − 1, we apply Lemma 3.5
with j replaced by j − 1 and with r = �j−1 and w = �j . It is easy to verify that
�j−1 ≤ 2�j whenever k ≥ 2d and j ≤ k/2. On making the trivial estimate

Ss,�j
(P, Qj, R;Ψj) � P 2d�j H̃d

j M̃d
j Qλs+ε

j

and noting that φj = 1/(dk), and hence Hj = 1, it follows easily that

Ts,�j−1(P, Qj−1, R, φj ;Ψj−1) � P d�j−1+εH̃d
j−1M̃

d
j Qλs

j ,

as required. Now suppose that (4.4) holds for J , where 1 ≤ J ≤ j−1. Then Lemma
3.2 gives

Ss,�J
(P, QJ , R;ΨJ ) � H̃d

JM̃d
JP (2d−1)�J−1Qλs+ε

J + Mγ
J+1Ts,�J

(P, QJ , R, φJ+1;ΨJ),

where γ = (2s−1)d+k�J (d2−1). Substituting (4.4) and noting that QJ = QJ+1MJ

then yields

Ss,�J
(P, QJ , R;ΨJ) � H̃d

JM̃d
JP (2d−1)�J−1Qλs+ε

J

(
1 + Mγ+d−λs

J+1 P 1−d(d−1)kφJ+1�J

)
,

and a simple calculation shows that the second term in parentheses can be expressed
as PMβ

J+1, where
β = k�J (d − 1) + k� − ∆s ≥ 0.

Hence the second term dominates, and we get

Ss,�J
(P, QJ , R;ΨJ ) � H̃d

JM̃d
JMβ

J+1Q
λs

J P (2d−1)�J+ε.

Thus an application of Lemma 3.5 gives

Ts,�J−1(P, QJ−1, R, φJ ;ΨJ−1) � P (2d−1−d(d−1)kφJ)�J−1H̃d
J−1M̃

d
JQλs+ε

J + P εWJ ,
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where

WJ = H
d(�J−1−1)
J

(
H̃d

JM̃d
JQλs

J

)1− �J−1
2�J

(
H̃d

JM̃d
JMβ

J+1Q
λs

J P (2d−1)�J

) �J−1
2�J .

After simplifying and putting σ = �J−1
2�J

, we find that

WJ = H̃d
J−1M̃

d
JQλs

J H
d�J−1
J Mσβ

J+1P
(d− 1

2 )�J−1 ,

and hence

Ts,�J−1(P, QJ−1, R, φJ ;ΨJ−1) � H̃d
J−1M̃

d
JQλs+ε

J

(
PΛ1 + H

d�J−1
J Mσβ

J+1P
(d− 1

2 )�J−1

)
,

where Λ1 = (2d− 1− d(d− 1)kφJ )�J−1. Moreover, the second term in parentheses
can be expressed as PΛ2 , where

Λ2 = (1 − dkφJ )d�J−1 +
φJ+1�J−1

2�J
(dk�J + ΩJ − ∆s) + (d − 1

2 )�J−1.

Finally, from (4.2) and the observation that φJ < 1/(dk) for J < j, we obtain the
relation

(2dkφJ − 1)�J = (dk�J + ΩJ − ∆s)φJ+1,

which yields

Λ2 = (1 − dkφJ )d�J−1 + (dkφJ − 1
2 )�J−1 + (d − 1

2 )�J−1 = Λ1.

Thus we find that (4.4) holds with J replaced by J − 1, as required. Applying this
bound with J = 0, we get

Ts,�(P, P, R, φ1;Ψ0) � P (2d−1−d(d−1)kφ1)�+dφ1+λs(1−φ1)+ε.

Lemma 3.2 therefore yields

Ss+�(P, R) � Ss,�(P, P, R;Ψ0) � PΛ3+ε + PΛ4+ε,

where

Λ3 = (2d − l)� − 1 + λs and Λ4 = (2d − 1)� + λs + φ1(dk� − ∆s),

and it is obvious that Λ3 ≤ Λ4. Thus we find that the exponent

λs+� = 2d(s + �) − k� + ∆s(1 − φ1) + �(dkφ1 − 1)

is permissible, and this completes the proof. �

We now need to gain some understanding of the size of the admissible expo-
nents provided by Theorem 4.2, and this is achieved by a fairly standard argument
(see, for example, [7], [9], [12], [13], and [16] for similar analyses). The following
lemma provides the starting point by relating these exponents to the roots of a
transcendental equation.

Lemma 4.3. Suppose that s ≥ (k + 3)� and that ∆s−� is an admissible exponent
satisfying �(log k)2 < ∆s−� ≤ k�. Write δs−� = ∆s−�/(dk�), and define δs to be the
unique (positive) solution of the equation

(4.5) δs + log δs = δs−� + log δs−� −
2
dk

+
2

dk(log k)3/2
.

Then the exponent ∆s = dk�δs is admissible.
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Proof. We apply Theorem 4.2 with j = [(log k)1/3]. Then on writing θs = φ(j, s, 1),
we find that the exponent

(4.6) ∆∗
s = ∆s−�(1 − θs) + �(dkθs − 1) = dk�δs−� − � + dk�θs(1 − δs−�)

is admissible. On recalling (2.1) and (4.1), a simple calculation shows that

ΩJ ≤ �(log k)1/2

for 0 ≤ J < j, provided that k is sufficiently large in terms of d. Thus on writing
φJ for φ(j, s, J) and noting that �J−1 ≤ �, we deduce from (4.2) that

(4.7) φJ−1 ≤ 1
2dk

+
1
2
(1 − δ′)φJ (2 ≤ J ≤ j),

where

(4.8) δ′ =
∆s−� − �(log k)1/2

dk�
> δs−�(1 − (log k)−3/2),

the last inequality following from the hypothesis that ∆s−� > �(log k)2. Using a
downward induction via (4.7), one easily verifies that

φJ ≤ 1
dk(1 + δ′)

(
1 + δ′

(
1 − δ′

2

)j−J
)

(1 ≤ J ≤ j),

so in particular we have

(4.9) θs = φ1 ≤ 1 + δ′21−j

dk(1 + δ′)
,

since 0 < δ′ < 1. Let us temporarily introduce the notation L = (log k)−3/2. Since
(1+αx)/(1+x) is a decreasing function of x whenever α < 1, we deduce from (4.8)
and (4.9) that

θs ≤ 1 + δs−�(1 − L)21−j

dk(1 + δs−�(1 − L))
≤ 1 + δs−�(21−j + L)

dk(1 + δs−�)
≤ 1 + 2δs−�L

dk(1 + δs−�)
,

provided that k is large enough so that j ≥ 1 + log2(log k)3/2. It now follows with
a little computation from (4.6) that

∆∗
s

dk�
≤ δs−�

(
1 − 2 − w

dk�(1 + δs−�)

)
,

where w = 2(1 − δs−�)L. Since log(1 − x) ≤ −x for 0 < x < 1, we therefore obtain

∆∗
s

dk�
+ log

∆∗
s

dk�
≤ δs−�

(
1 − 2 − w

dk(1 + δs−�)

)
+ log δs−� −

2 − w

dk(1 + δs−�)

≤ δs−� + log δs−� −
2
dk

+
2

dk(log k)3/2

on inserting the bound w ≤ 2L. Now δ + log δ is an increasing function of δ, so if
δs is defined by (4.5), then it must be the case that ∆∗

s/(dk�) ≤ δs, and it follows
that dk�δs is an admissible exponent. �

We are now in a position to state the stronger mean value estimates arising from
repeated differencing in a form convenient for applications.
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Theorem 4.4. Suppose that d ≥ 2 and that k is sufficiently large in terms of d,
define s0 and s1 as in (1.6) and (1.7), and write L = (log k)2. Then the exponents
∆s defined by

∆s =

{
dk�e3− 2s

dk� if 1 ≤ s ≤ s0,

�Le8/3
(
1 − 3

2dk (1 − d
2L )

)(s−s0)/�
if s > s0

are admissible.

Proof. Write r = (k + 2)�. We start by observing that the theorem is trivially true
when s ≤ r. Next, we define δs to be the unique positive solution of the equation

(4.10) δs + log δs = 1 − 2(s − r)
dk�

+
2(s − r)

dk�(log k)3/2
,

and we show inductively that the exponent ∆s = dk�δs is admissible whenever
r < s ≤ s0. First of all, suppose that r < s ≤ r + �. The exponent ∆∗

s = k� is
trivially admissible, and furthermore

∆∗
s

dk�
+ log

∆∗
s

dk�
=

1
d

+ log
1
d

< 1 − 2
dk

< δs + log δs,

since 0 < s − r ≤ �. It follows that ∆∗
s/(dk�) < δs and hence that ∆s = dk�δs is

admissible. Now suppose that r+� < s ≤ s0 and that the exponent ∆s−� = dk�δs−�

is admissible. Then we have

δs−� + log δs−� > 1 − 2(s0 − r)
dk�

> 1 − log(dk) + 2 log log k.

Since δs−� < 1, we deduce that dkδs−� > (log k)2, and thus the exponent

∆′
s−� = min{k�, ∆s−�}

satisfies the hypotheses of Lemma 4.3. We therefore conclude that the exponent
∆′

s = dk�γs is admissible, where γs is the positive root of the equation

γs + log γs = δ′s−� + log δ′s−� −
2
dk

+
2

dk(log k)3/2
,

and where δ′s−� = ∆′
s−�/(dk�) ≤ δs−�. On applying (4.10) with s replaced by s− �,

we find that γs +log γs ≤ δs +log δs, and hence γs ≤ δs. It follows that ∆s = dk�δs

is admissible. Moreover, when s ≤ s0, we see from (4.10) that

log δs ≤ 7
3
− 2s

dk�
,

provided that k is sufficiently large, and the desired bound for ∆s follows. Finally,
if s > s0, we take t to be the integer with s0 − � < t ≤ s0 and t ≡ s (mod �). Then
we know that ∆t = dk�e7/3−2t/(dk�) is an admissible exponent, and we have

(4.11) e7/3�(log k)2 ≤ ∆t < e8/3�(log k)2.

We now apply Theorem 4.2 with j = 2 and s replaced by t + �. In the notation of
that theorem, we have φ(2, t + �, 2) = 1/(dk), and thus

φ∗(2, t + �, 1) =
1

2dk
+

(
1
2

+
Ω1 − ∆t

2dk�1

)
1
dk

=
1
dk

+
Ω1 − ∆t

2d2k2�1
.

It therefore follows from (4.3) that the exponent

(4.12) ∆t+� = ∆t

(
1 − 1

dk

(
1 +

�

2�1

)
+

∆t − Ω1

2d2k2�1

)
+

Ω1�

2dk�1
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is admissible. A simple calculation reveals that Ω1 ≤ d� for k sufficiently large,
and thus (4.11) gives Ω1 ≤ d(log k)−2∆t = dL−1∆t. Hence on iterating (4.12) and
noting that �/�1 = 1 + O(1/k), we find that the exponent

∆s = ∆t

(
1 − 3

2dk

(
1 − d

2L

))(s−t)/�

is admissible for k sufficiently large, and the theorem follows on substituting the
upper bound in (4.11) and recalling that t ≤ s0. �

To deduce Theorem 1.1, we first note that

1 − 3
2dk

(
1 − d

2L

)
≤

(
1 − 3

2dk

) (
1 +

1
kL

)
for dk ≥ 6. Thus on using the inequality (1 + b/x)x ≤ eb we find that(

1 − 3
2dk

(
1 − 1

log k

))dk

≤ e−3/2 · ed/L.

Theorem 1.1 now follows immediately from Theorem 4.4 when s ≤ s1. Finally, the
argument given in section 6 below to prove Theorem 1.2 may be modified to show
that ∆s = 0 for s > s1, so Theorem 1.1 holds in that case as well.

5. Major arc asymptotics

In this section, we obtain an asymptotic formula for the exponential sum f(α)
when α lies within a narrow set of major arcs. We let W be a parameter with
W ≤ (log P )1/2−ε and define N(q, a; W ) to be the set of all α ∈ T� such that

|αi − ai/q| ≤ WP−k (|i| = k).

Further, write N(W ) for the union of all the N(q, a; W ) with 0 ≤ ai ≤ q ≤ W
and (q, a) = 1. Here and throughout we adopt the notation (x,y) to represent
gcd(x, y1, . . . , y�) whenever x ∈ Z and y ∈ Z�. In what follows, we find it convenient
to introduce the notation

Sj(q, a; xj+1, . . . , xd) =
∑

1≤r1,...,rj≤q

e

⎛⎝q−1
∑
|i|=k

air
i1
1 · · · rij

j x
ij+1
j+1 · · ·xid

d

⎞⎠
and

wj(β; xj+1, . . . , xd) =
∫

[R,P ]j
ρ̃j(γ, R) e

⎛⎝ ∑
|i|=k

βiγ
i1
1 · · · γij

j x
ij+1
j+1 · · ·xid

d

⎞⎠ dγ1 · · · dγj ,

where

ρ̃j(γ, R) =
j∏

i=1

ρ

(
log γi

log R

)
and where ρ denotes the well-known Dickman function (see, for example, Vaughan
[11, section 12.1]). We shall write S(q, a) and w(β) for Sd(q, a) and wd(β), respec-
tively, and we also write

S(q; g) =
q∑

r=1

e

(
g(r)
q

)
and ρ∗(γ, R) = ρ

(
log γ

log R

)
.
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Lemma 5.1. For any polynomial g(x) with integer coefficients, one has∑
x∈A(γ,R)

e

(
g(x)

q

)
= q−1S(q; g)ρ∗(γ, R)γ + E(γ),

where E(γ) is a piecewise-differentiable function satisfying E(γ) � qP/ log P .

Proof. First of all, by Lemmas 5.3 and 5.4 of Vaughan [10], one has

(5.1)
∑

x∈A(γ,R)
x≡r (mod q)

1 = q−1ρ∗(γ, R)γ + O

(
P

log P

)
.

Next, by sorting the sum according to residue classes modulo q and noting that
g(x) ≡ g(r) (mod q) whenever x ≡ r (mod q), we obtain∑

x∈A(γ,R)

e

(
g(x)

q

)
=

q∑
r=1

e

(
g(r)
q

) ∑
x∈A(γ,R)

x≡r (mod q)

1,

and the lemma now follows easily. �

We can analyze the effect of a small twist on the above sum via partial summa-
tion.

Lemma 5.2. Suppose that g(x) ∈ Z[x] and h(x) ∈ R[x] and that h′(x) � WP−1

whenever |x| ≤ P . Then one has∑
x∈A(P,R)

e

(
g(x)

q
+ h(x)

)
= q−1S(q; g)

∫ P

R

ρ∗(γ, R)e(h(γ)) dγ + O

(
qWP

log P

)
.

Proof. For fixed g and q, we write

T (γ) =
∑

x∈A(γ,R)

e

(
g(x)

q

)
.

By Lemma 5.1 and properties of the Riemann-Stieltjes integral, we have

(5.2)
∑

x∈A(P,R)

e

(
g(x)

q
+ h(x)

)
=

∫ P

R

e(h(γ))T ′(γ) dγ + O(R)

and
T ′(γ) = q−1S(q; g)

∂

∂γ

[
ρ∗(γ, R)γ

]
+ E′(γ),

where E(γ) � qP/ log P . Moreover, we have

∂

∂γ

[
ρ∗(γ, R)γ

]
= ρ

(
log γ

log R

)
+

1
log R

ρ′
(

log γ

log R

)
.

Since log R � log P , we deduce that

T ′(γ) = q−1S(q; g)ρ∗(γ, R) + E′(γ) + O

(
1

log P

)
for γ ≥ R, since ρ′(x) � 1 whenever x ≥ 1. We therefore obtain∫ P

R

e(h(γ))T ′(γ) dγ = q−1S(q; g)

(∫ P

R

ρ∗(γ, R)e(h(γ)) dγ + E(q, P )

)
,
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where

E(q, P ) =
∫ P

R

E′(γ)e(h(γ)) dγ + O

(
P

log P

)
.

Integrating by parts and using the assumption that h′(γ) � WP−1, we find that

E(q, P ) � qP

log P
+

∫ P

R

|E(γ)h′(γ)| dγ � qWP

log P
.

The lemma now follows immediately on noting the trivial bound S(q; g) � q and
recalling the formula (5.2). �

Lemma 5.3. Suppose that α ∈ N(q, a; W ) ⊆ N(W ), and write βi = αi − ai/q.
Then one has

f(α) = q−dS(q, a)w(β) + O

(
qWP d

log P

)
.

Proof. We prove by induction that one has

(5.3)
∑

x1,...,xj∈A(P,R)

e

⎛⎝ ∑
|i|=k

αixi

⎞⎠ = q−jSj(q, a; x̃j+1)wj(β; x̃j+1) + O

(
qWP j

log P

)
for 1 ≤ j ≤ d, where we have written x̃j+1 for the vector (xj+1, . . . , xd). For j = 1,
we fix x2, . . . , xd and let

g(x1) =
∑
|i|=k

aix
i1
1 xi2

2 · · ·xid

d and h(x1) =
∑
|i|=k

βix
i1
1 xi2

2 · · ·xid

d .

Then since α ∈ N(q, a; W ) ⊆ N(W ), we have

h′(x1) �
∑
|i|=k

|βi|P k−1 � WP−1

whenever |x1| ≤ P , so (5.3) follows immediately from Lemma 5.2 in the case j = 1.
Now suppose that (5.3) holds for some j < d, and write Uj(x) for the left-hand side
of (5.3). Then one has

(5.4) Uj+1(x) = q−j
∑

xj+1∈A(P,R)

Sj(q, a; x̃j+1)wj(β; x̃j+1) + O

(
qWP j+1

log P

)
,

and the first term on the right-hand side may be rewritten as

q−j
∑

1≤r1,...,rj≤q

∫
[R,P ]j

ρ̃j(γ, R)
∑

xj+1∈A(P,R)

e(q−1g(x, r) + h(x, γ)) dγ1 · · · dγj ,

where

g(x, r) =
∑
|i|=k

air
i1
1 · · · rij

j x
ij+1
j+1 · · ·xid

d and h(x, γ) =
∑
|i|=k

βiγ
i1
1 · · · γij

j x
ij+1
j+1 · · ·xid

d .

Let us also write V (x, r, γ) for the sum over xj+1 on the right-hand side. We may
temporarily fix the variables r, γ, xj+2, . . . , xd and view g(x, r) and h(x, γ) as
functions of xj+1 alone. Then by applying Lemma 5.2 as above, we find that

V (x, r, γ) = q−1

q∑
rj+1=1

e(q−1G(x, r))
∫ P

R

ρ∗(γj+1, R)e(H(x, γ)) dγj+1+O

(
qWP

log P

)
,
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where
G(x, r) =

∑
|i|=k

air
i1
1 · · · rij+1

j+1 x
ij+2
j+2 · · ·xid

d

and
H(x, γ) =

∑
|i|=k

βiγ
i1
1 · · · γij+1

j+1 x
ij+2
j+2 · · ·xid

d .

On substituting this into (5.4), we find that

Uj+1(x) = q−j−1Sj+1(q, a; x̃j+2)wj+1(β; x̃j+2) + O

(
qWP j+1

log P

)
,

and thus (5.3) holds with j + 1 in place of j. The lemma now follows immediately
by taking j = d in (5.3). �

Finally, we record the asymptotics for our exponential sums over complete inter-
vals, which are valid on a wider set of major arcs. We let X ≤ P 1−ε be a parameter,
and define M(q, a; X) to be the set of α ∈ T� such that

|qαi − ai| ≤ XP−k (|i| = k).

We further write M(X) for the union of the M(q, a; X) with 0 ≤ ai ≤ q ≤ X and
(q, a) = 1. Finally, write

v(β) =
∫

[0,P ]d
e

⎛⎝ ∑
|i|=k

βiγ
i

⎞⎠ dγ

in analogy with the function w(β) defined above.

Lemma 5.4. Suppose that α ∈ M(q, a; X) ⊆ M(X), and write βi = αi − ai/q.
Then one has

F (α) = q−dS(q, a)v(β) + O(XP d−1).

Proof. This follows immediately from Lemma 5.3 of [9]. For an alternative proof,
one may follow the argument of Lemmas 5.1–5.3 above with the right-hand side of
(5.1) replaced by γ/q + O(1) to deduce the result. �

The argument of this section may obviously be applied to exponential sums
over more general sets than [1, P ] and A(P, R), the two considered here. All one
needs is a formula of the type (5.1), which ensures that the elements of the set are
well distributed in residue classes. The rest of the argument is essentially partial
summation.

6. Counting linear spaces

In order to establish Theorem 1.2, we introduce the exponential sums

Fj(α) =
∑

x∈[−P,P ]d

e

⎛⎝ ∑
|i|=k

cjαixi

⎞⎠
and

fj(α) =
∑

x∈A∗(P,R)d

e

⎛⎝ ∑
|i|=k

cjαixi

⎞⎠ ,
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where A∗(P, R) = ±A(P, R) ∪ {0}. It is fairly easy to argue that the exponential
sum estimates established in §4 and in [9] carry over to the above situations, in
which the components of x can take on negative values. On writing s = t+2u, one
sees by orthogonality that Ns,k,d(P ) ≥ I(P ; T�), where

I(P ; B) =
∫

B

⎛⎝ t∏
j=1

Fj(α)

⎞⎠⎛⎝ s∏
j=t+1

fj(α)

⎞⎠ dα.

We define the set of major arcs by M = M(cP 1/2), where we have written
c = max|cj |, and further write m = T� \ M for the set of minor arcs. We deal
with the minor arcs by applying Theorem 1.1 in combination with the following
Weyl-type estimate. Here we write F (α) for the coefficient-free version of Fj(α).

Lemma 6.1. Suppose that k is sufficiently large in terms of d and that |F (α)| ≥
P d−σ+ε for some ε > 0, where σ−1 ≥ 3k2� log k. Then there exist integers ai and
q, with (q, a) = 1, satisfying 1 ≤ q ≤ P kσ and |qαi − ai| ≤ P k(σ−1) for each i with
|i| = k.

Proof. This is an immediate consequence of Parsell [9, Theorem 1.2], together with
the above remarks. �

By making trivial estimates, one finds that

I(P ; m) �
∫

m

|Fi(α)tfj(α)2u| dα

for some i and j, where 1 ≤ i ≤ t and t + 1 ≤ j ≤ s. Moreover, the argument of
[7, Lemma 10.3] implies that ciα /∈ M(P 1/2) whenever α ∈ m. Therefore, after a
change of variable, we obtain from Lemma 6.1 that

I(P ; m) �
(

sup
α∈m

|F (ciα)|
)t

Su(P, R) � P sd−k�−σt+∆u ,

where σ−1 = 3k2� log k, and where ∆u is as in Theorem 1.1. Taking t = 3k� and

u =
⌈
dk�

(
2
3 log(k�) + 1

2 log(dk) + log log k + 3
)⌉

gives ∆u < (k log k)−1 and hence σt > ∆u. Thus one has

(6.1) I(P ; m) � P sd−k�−τ

for some τ > 0, which completes the analysis of the minor arcs.
Next we prune the major arcs down to a thin set N = N(W ), where W = (log P )ν

for some sufficiently small ν > 0. From Lemmas II.2 and II.8 of [1], we have the
estimates

(6.2) v(β) � P d

⎛⎝1 +
∑
|i|=k

|βi|P |i|

⎞⎠−1/k

and

(6.3) S(q, a) � qd−1/k+ε
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for every ε > 0, provided that (q, a) = 1. In conjunction with these estimates, a
routine application of Lemma 5.4 shows that

(6.4) I(P ; M \ N) � P sd−k�W−δ

for some δ > 0, so it now suffices to deal with the set N.
Write

B = [−1, 1]td × ([−1,−R/P ] ∪ [R/P, 1])2ud

and

H(γ) =
s∏

j=t+1

ρ

(
log(Pγj)

log R

)
.

On using Lemma 5.3, together with (6.2), (6.3), and the observation that meas(N)
� W 2�+1P−k�, one finds that

(6.5) I(P ; N) = JSP sd−k� + O(P sd−k�W−δ)

for some δ > 0, where

J =
∫

R�

∫
B

H(γ) e

⎛⎝ ∑
|i|=k

βi(c1γ
i
1 + · · · + csγ

i
s)

⎞⎠ dγ

denotes the singular integral and

S =
∞∑

q=1

∑
a∈[1,q]�

(q,a)=1

s∏
j=1

q−dS(q, cja)

denotes the singular series. It now suffices to show that J and S are both positive.
To deal with the singular integral, we follow the argument of [8, Lemma 7.4].

We let T be a positive real number and introduce the functions

KT (β) =
(

sin πβT−1

πβT−1

)2

and KT (β) =
∏
|i|=k

KT (βi).

It follows from Lemma 14.1 of Baker [2] that

(6.6) K̂T (y) =
∫ ∞

−∞
KT (β) e(βy) dβ = T max(0, 1 − T |y|)

for all real numbers y. We introduce the auxiliary singular integral

JT =
∫

R�

KT (β)
∫

B

H(γ) e

⎛⎝∑
|i|=k

βi(c1γ
i
1 + · · · + csγ

i
s)

⎞⎠ dγ

and note that (6.2) yields

(6.7) J − JT �
∫

R�

(1 −KT (β))
∏
|i|=k

(1 + |βi|)−
t

k� dβ.

A simple calculation reveals that

1 −KT (β) � min(1, |β|2T−2),

so by considering the integral in (6.7) over the regions |β| ≤ T and |β| > T
separately, one easily shows that J − JT � T−δ for some δ > 0. Hence we have

(6.8) J = lim
T→∞

JT ,
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and so it suffices to analyze JT . We first note that

(6.9) JT =
∫

B

H(γ)
∏
|i|=k

K̂T (gi(γ)) dγ,

where we have written
gi(γ) = c1γ

i
1 + · · · + csγ

i
s.

Since we have assumed that the system gi(γ) = 0 (|i| = k) possesses a non-singular
real solution η = (η1, . . . , ηs), the Implicit Function Theorem ensures that locally
near η there is an (sd − �)-dimensional space of real solutions, continuously pa-
rameterized by sd − � of the coordinates. Therefore, by using continuity of the
determinant, we may perturb η slightly to obtain another non-singular solution in
which at most � coordinates are zero. Furthermore, we may suppose after a re-
arrangement of variables that each j for which some ηjl = 0 satisfies 1 ≤ j ≤ t. It
then follows that η lies in the interior of B whenever P is sufficiently large. Now let
κ be any bijection from the set of i with |i| = k to the set {1, . . . , �}, and consider
the map ϕ : Rsd → Rsd defined by

ϕκ(i)(γ) = gi(γ) and ϕj(γ) = γj (� + 1 ≤ j ≤ sd).

By the Inverse Function Theorem, there is an open set U ⊆ B containing η, and
an open set V containing (0, . . . , 0, η�+1, . . . , ηsd), such that ϕ maps U injectively
onto V . Since H(γ) � 1 on B and the integrand in (6.9) is non-negative, we have

(6.10) JT �
∫

V

K̂T (u1) · · · K̂T (u�) du1 · · · dus.

In particular, the projection of V onto the first � components contains the set
D = [−1/2T, 1/2T ]� whenever T is sufficiently large. Moreover, (6.6) shows that
the integrand in (6.10) is bounded below on D by (T/2)�. Since meas(D) = T−�, it
follows immediately that JT � 1 for T sufficiently large, and we therefore conclude
from (6.8) that J > 0.

In order to show that S > 0, we first note that Lemma II.4 of [1] may be used
to deduce that the function

S(q) =
∑

a∈[1,q]�

(q,a)=1

s∏
j=1

q−dS(q, cja)

is multiplicative. Moreover, the series

T (p) =
∞∑

h=0

S(ph)

is absolutely convergent in view of the bound (6.3), so we find that S is represented
by the absolutely convergent product S =

∏
p T (p) and that there exists an integer

p0 such that
1
2
≤

∏
p≥p0

T (p) ≤ 3
2
.

It therefore suffices to show that T (p) > 0 for all primes p < p0. Let Ms(q) denote
the number of solutions of the system of congruences

c1xi
1 + · · · + csxi

s ≡ 0 (mod q) (|i| = k).
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By applying the argument of [11, Lemma 2.12], as in [7, Lemma 9.7], we find that∑
d|q

S(d) = q�−sdMs(q),

and it follows that

T (p) = lim
h→∞

∑
d|ph

S(d) = lim
h→∞

ph(�−sd)Ms(ph).

Since we have assumed that the system (1.2) possesses a non-singular p-adic solution
for each prime p, we may apply a Hensel’s Lemma argument as in [7, Lemma 9.9],
to conclude that there exists an integer u = u(p) < ∞ such that for all h one has

Ms(ph) ≥ p(h−u)(sd−�).

It follows that T (p) ≥ pu(�−sd) for each p < p0, and we therefore deduce that
S > 0. Theorem 1.2 now follows on recalling (6.1), (6.4), and (6.5), together with
the positivity of the singular integral.
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